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Abstract 
 

Biosurfactants are gaining attention because they are biologically obtained and can substitute 

for fossil oil-driven surfactants. One important type of glycolipid biosurfactant is the mannosylerythritol 

lipid (MEL), produced mainly by Ustilaginomycetes and Moesziomyces spp. Optimal use of the 

metabolism potential of these organisms can help in biotechnological development to make MEL 

production competitive. This was achieved with an in silico overview and accurate predictions of the 

experimental situations. 

Since Moesziomyces metabolic network is not coded in any available database, a recent 

genome-scale metabolic model for metabolic activity modelling of Ustilago maydis needs to be updated 

for use with Moesziomyces strains, as these producers of MEL have high genome similarity. The 

majority of the metabolic problems in the model are related to specific metabolite production that does 

not occur in Moesziomyces and the presence of dead-end reactions. MATLAB software and the COBRA 

toolbox were used to obtain a more accurate model.  

Exponential batch and fed-batch cultivations with glucose were employed to test growth and 

MEL production. These values were given as input to the model, which predicted values with higher 

error values than U. maydis values, by applying the constraint-based model approach. With more 

experimental data and other analytical techniques, this upgraded model will enable both 

biotechnological applications and the investigation of metabolic responses to various environmental 

conditions. 

 

Keywords: Metabolic modelling; Flux Balance Analysis; Mannosylerythritol lipids; Moesziomyces; 

MATLAB; Ustilago Maydis. 
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Resumo 
 

Os biosurfactantes estão a ganhar atenção porque são obtidos biologicamente e podem 

substituir os surfactantes derivados de combustíveis fósseis. Um tipo importante de biosurfactante 

glicolipido é o Manosileritritolípidos (MEL), produzido principalmente por Ustilaginomycetes e 

Moesziomyces spp. A utilização otimizada do potencial metabólico destes organismos pode ajudar ao 

desenvolvimento biotecnológico, tornando a produção de MEL competitiva. Recorrendo ao uso de 

simulações in silico, foi possível obter previsões para situações experimentais. 

Uma vez que a rede metabólica de Moesziomyces não está codificada em nenhuma base de 

dados disponível, um modelo metabólico recente à escala do genoma para modelação da atividade 

metabólica de Ustilago maydis precisa de ser atualizado para utilização com estirpes de Moesziomyces, 

uma vez que estes produtores de MEL têm uma elevada semelhança genómica. A maioria dos 

problemas metabólicos encontrados no modelo estão relacionados com a produção de metabolitos 

específicos que não estão presentes no metabolismo de Moesziomyces e com a presença de reações 

incompletas. O software MATLAB e a toolbox COBRA foram utilizados para obter um modelo mais 

preciso.  

Fermentações com glucose como fonte de carbono, foram realizadas para testar o crescimento 

e a produção de MEL em M. antarcticus. Os valores obtidos foram dados como input ao modelo, que 

previu valores de erro superiores aos valores de erro obtidos com U. maydis, aplicando a abordagem 

do modelo baseado em restrições. Com mais dados experimentais e outras técnicas analíticas, este 

modelo atualizado permitirá várias aplicações biotecnológicas, como a investigação de respostas 

metabólicas a várias condições ambientais. 

 

Palavras-chave: Modelação metabólica; Análise de Balanço de Fluxo; Manosileritritolípidos; 

Moesziomyces; MATLAB; Ustilago Maydis. 
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1. Scope and Motivation  

A vast variety of products, including cosmetics, agricultural chemicals, household detergents, 

and pharmaceuticals are produced using surfactants. Microbial surfactants, also known as 

"biosurfactants,” are environmentally friendly substitutes for conventional surfactants. As environmental 

consciousness and emphasis on a sustainable society that works in unison with the environment have 

increased, natural surfactants have become increasingly important. [3] The increase in the bioavailability 

of insoluble nutrients, the facilitation of microbial attachment to hydrophobic surfaces, and antibiotic 

activity are some benefits of biosurfactants, according to the research.  

The process of biosurfactant production is affected by knowledge gained in metabolic pathways. 

The objective of this work was to study and upgrade an available Ustilago maydis genome-scale 

metabolic model into a Moesziomyces antarcticus model, with a focus on the biosurfactant 

Mannosylerythritol lipids (MEL) production, knowing that yeast strains of the genus Pseudozyma 

(currently Moesziomyces) and Ustilago abundantly produce MELs. This approach will lead to the 

development of a cultivation strategy that could turn MEL production cost-competitive with fossil-driven 

surfactants in the future, namely by mixing carbon sources of different origins (vegetable oils and sugars) 

to improve MEL titres and facilitate downstream.  

This should be achieved using an in silico approach by designing a metabolic flux model that 

describes the main metabolic pathway used for MEL production, with the target of the pathways for the 

production and assembly of MEL building blocks. Using this model, the flux distribution at branch points 

was established by collecting experimental data on substrate consumption and MEL production from 

hydrophilic (hexoses and pentoses, such as glucose) substrates via glycolysis, gluconeogenesis, 

tricarboxylic acid cycle, pentose phosphate pathway, fatty acid synthesis, and β-oxidation to generate 

MEL building blocks. As a result, bottlenecks in MEL production will be recognized, and reasonable 

solutions for producing this biosurfactant will be developed. The final goal is to make biosurfactant 

economic costs competitive with fossil oil-based surfactants by increasing substrate carbon use 

efficiency.  

1.1. Research questions 

The metabolite of interest in this work, mannosylerythritol lipid, is a biosurfactant, namely a 

glycolipid biosurfactant, which is of growing importance in a different set of industries, because the 

production yields obtained are substantially higher than those of other forms of biosurfactants derived 

from renewable resources. Glycolipid biosurfactants are the most promising for commercial 

manufacturing and use; however, this component is difficult to assess because of its high production 

costs. 

By effectively synthesizing microbial glycolipids for biomedical applications and other uses, the 

knowledge obtained through the metabolic engineering of microbial lipids for biofuel generation can be 

applied to lower production costs. A recently released (March 2022) in silico model (iUma22 model) 

obtained for Ustilago maydis is, to date, the only available genome-scale metabolic model for the 
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Ustilaginomycete class of organisms. Because the M. antarcticus strain does not have any available 

model, utilising this updated and complete model, even from a different species, is the best way to study 

the metabolism of this organism, considering that the MEL synthesis pathways are present in the 

iUma22 model. 

1.2. Research strategy 

Using the in silico model obtained from the literature, the results were structured according to three 

principal objectives: 

• Study the in silico Ustilago maydis model and the respective pathways. (Chapter 5.1.) 

This was possible through the identification of reactions and the respective pathway 

visualization and parametrization of the model using the flux balance analysis (FBA) approach. 

Modification to this model as deletion of reactions that do not exist in Moesziomyces antarcticus, and 

addition of reactions that are necessary to achieve a more complete metabolism was also performed.  

• Study of possible Moesziomyces strains and carbon sources to feed yeast and the respective 

growth rate, substrate uptake rate, and MEL production rate values. (Chapter 5.2.) 

This was achieved in three different experiments. The first experiment had the objective of 

choosing the carbon source and the strain for use in the following experiments and was realized with 

three different carbon sources (galactose, glucose, and lactose) and two different strains (M. antarcticus 

and M. bullatus). The other two fermentations were assessed to study the effects of the chosen carbon 

source, glucose, on growth and MEL production. One batch experiment with different initial glucose 

concentrations was used to obtain M. antarcticus growth rate and substrate uptake rate values, which 

were compared with values from the literature obtained with U. maydis. The other experiment, fed-batch 

fermentation, had different characteristics, with equal initial glucose concentration and addition on day 

4 of different glucose concentrations. In this experiment, the values of lipids and MEL production were 

achieved to later be possible to have the in silico model optimized for MEL production. 

• Fitting of experimental results to the iUma22 model and to the modified model. (Chapter 5.3.) 

To understand the accuracy of the predictions of the iUma22 model for the results obtained with 

M. antarcticus, the growth-rate values and the MEL production values obtained experimentally were 

compared with values predicted by the model, with and without modifications. In this step was also 

analysed, by pathway visualization, which routes are active under the optimization of biomass reaction 

or having MEL production as the objective.  
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2. Introduction 

2.1. Biosurfactants  

 Nowadays it is important to have a sustainable alternative to fossil-driven surfactants, since 

surfactants' manufacture, usage, and disposal can affect the environment. Surfactants are utilised in the 

production of a wide range of products, including cosmetics, agricultural chemicals, home detergents, 

and medications. Delivering a more environmentally friendly surfactant alternative to chemical 

surfactants is possible with microbial surfactants, classified as “biosurfactants”, that were initially 

recognized as extracellular amphiphilic molecules among natural surfactants.[4]  

 Microbial-based surfactants are characterised as emulsifying biomolecules that are surface-

active and can be an adequate substitute and solution to the use of fossil oil-based surfactants. 

Biosurfactants are assigned to five major classes, as low molecular weight compounds, including 

glycolipids (rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids) and high 

molecular weight biosurfactants like polymer type (emulsan). [5] The other types of biosurfactants are 

lipopolysaccharides or lipopeptides (surfactin, serrawettin), fatty acid type, and particulate surfactants. 

Low-molecular mass biosurfactants are efficient in reducing surface and interfacial tensions, while the 

ones with higher molecular mass (such as emulsans) are better in bioemulsification. [6] [7] 

 Natural surfactants have become increasingly essential as environmental awareness and the 

emphasis on a sustainable society in harmony with the global environment has grown.[4] According to 

the literature, some of the advantages of biosurfactants are the increase in the bioavailability of insoluble 

nutrients, allowance of adhesion of microorganisms to hydrophobic surfaces, and antibiotic activity. [8] 

 The interfacial features of surfactants are mostly reflected in their structures. Furthermore, 

biosurfactants are produced stereo-selectively from biomolecules via enzymatic processes, the majority 

of which are chiral compounds with a unified molecular arrangement. As a result, biosurfactants can 

demonstrate superior orientation and packing properties in their interfaces. These structural 

characteristics enable biosurfactants to conduct actions that are not possible with typical chemical 

surfactants. 

2.1.1. Glycolipids 

 Glycolipids are characterised as amphiphilic molecules, with a hydrophobic and a hydrophilic 

group, namely lipid, and glycosyl moieties. These chemicals perform critical roles in the exchange of 

energy, substances, and signals across a variety of interfaces, as well as the organisation of biological 

systems. They have one or more functional groups and chiral centres, complex structures, high surface 

activity (due to low critical micelle concentration), biological activity, high biodegradability, and low 

toxicity.[4] The chemical structures of some representative glycolipid biosurfactants are presented in 

Figure 1. 
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Figure 1 – Chemical structures of main glycolipid biosurfactants. [4] 

 Because their production yields are substantially higher than those of other forms of 

biosurfactants, and as they can be generated from renewable resources, namely from carbohydrate 

biomass, glycolipid biosurfactants have received the greatest attention. As a result, glycolipids 

biosurfactants are the most promising for commercial manufacture and use. [4]  

 There are several classifications for glycolipids, the most useful of which is to divide them into 

simple and complex glycolipids (Figure 2). Simple GLs (SGLs), also known as saccharolipids, are two-

component glycolipids with direct links between the glycosyl and lipid moieties. Complex glycolipids 

(CGLs) are structurally more heterogeneous, as they comprise residues such as glycerol 

(glycoglycerolipids), peptide (glycopeptidolipids), or other residues in addition to the glycosyl and lipid 

moieties. Mannosylerythritol Lipid is one of the SGLs addressed with natural microbial origin. [9] 

Nonetheless, glycolipids, due to their high production costs, are hardly assessing the market. 

The knowledge gained from the metabolic engineering of microbial lipids for biofuel production can be 

used for the effective synthesis of microbial glycolipids for biomedical applications and other uses, 

diminishing the production costs problem.      
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Figure 2 – Classification of glycolipids. Simple glycolipids (SGLs) comprise glycolipids consisting of glycosyland 

lipid residues only. Complex glycolipids (CGLs) contain different residues in addition to the glycosyl and lipid 

residues. [9] 

2.1.2. Mannosylerythritol Lipid 

 Mannosylerythritol lipid (MEL) is classified as a glycolipid type of biosurfactant, constituted by a 

hydrophilic sugar, 4-O-β-D-mannopyranosyl-D-erythritol, that compresses a mannose and an erythritol 

residue and a hydrophobic tail, consisting of two fatty acid chains. These chains are in the C2 and C3 

of the pentose sugar structure of mannose (Figure 3) and according to the degree of the carbon 

acetylation at C4 and C6 position of mannose, it is possible to obtain four MEL homologs. The degree 

of acetylation and the chirality of erythritol are used to classify MELs as four distinct variants: MEL-A, 

MEL-B, MEL-C, and MEL-D, ordered from the most hydrophobic to the most hydrophilic, since MEL-A 

has a di-acetylated structure and MEL-D a non-acetylated one. The length of each fatty acid residue is 

influenced by the respective producer organism, in this work, the Moesziomyces yeast (previously 

referred to in the literature as Pseudozyma), of Ustilaginaceae family. Furthermore, mono-acetylated 

MELs, MEL-B and MEL-C, which are deacetylated MEL-A, are the primary products of Moesziomyces 

species such as M. tsukubaensis, M. hubeiensis, and M. graminicola. [10,11] [12] 

         
Figure 3 – General structure of di-acylated mannosylerythritol lipid. (MEL-A: R1=R2=Acetyl; MEL-B: R1=Acetyl 

,R2=H; MEL-C: R1=H, R2=Acetyl, MEL-D: R1=R2=H). Variable chain-length and saturation of fatty acid side-chains 

at C2 (m= 2–16) and C3 (n= 2–10). [11] 
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             This compound has a variety of applications, making it a much-studied product. MEL can be 

employed in a variety of contexts, including the agrochemicals industry, pharmaceutical industry, 

cosmetics industry, and even as surface-modifiers in bioplastics. In terms of molecular properties, MEL 

can alter cancer cell signalling pathways, increase therapeutic efficacy, and interact with membrane 

cells, suppressing cell receptors, and also have antimicrobial activity. [13] This microbial glycolipid may 

also change membrane conformation, giving MEL self-assembling and phase-behaviour characteristics. 

 To obtain MEL production it is common to have a carbon source that has hydrophobic 

properties. Examples of the most often used substrates are plant oils (soybean, sunflower, rapeseed), 

sugars or glycerol, that enhance the growth of biomass and, sometimes, of MEL production. The process 

engineering of MEL production, however, lacks some knowledge, with few research on the 

characterization of Ustilaginaceae fungal growth factors such as growth rates, substrate consumption, 

biomass yield, or oxygen demands. As so, it would be interesting to get a deeper insight into how those 

growth parameters and the resulting biomass concentration are related to successive MEL 

production.[11] 

2.1.2.1. Characterization of MEL and Lipids 

 The great structural variability of MEL demands the use of many approaches to characterise the 

structures and quantify the amount of MEL produced in yeast fermentations. Gas chromatography (GC), 

high performance liquid chromatography (HPLC), mass spectrometry (MS), nuclear magnetic 

resonance (NMR) spectroscopy, solvent extraction or thin-layer chromatography (TLC) are all widely 

used procedures. 

 Gas chromatographic analysis are used to determine the fatty acids incorporated into the side 

chains of pure MELs and clarification of the structure can be obtained by mass spectrometry. Following 

the fatty acid profiles, the MEL structures, including their molecular weight, the acetylation pattern, and 

the fatty acid residue pairings, are possible to investigate through MS technique. [14] Thus, GC-MS is 

used to assess the fatty acid content of the substrate and MEL product.  [15]  

 High-performance liquid chromatography approach is frequently employed among different 

research groups for more reliable quantification of MEL. Organic solvents are used to extract MEL and 

fatty acids or triglycerides from the culture broth, and the organic phases are collected. Following that, 

the hydrophobic components are separated on an HPLC column and can be analysed, with a distinct 

peak for each component determined by the retention time. Thin-layer chromatography has traditionally 

been used to classify MEL, being a qualitative method that allows separation of the four MEL variants 

(MEL-A, MEL-B, MEL-C, and MEL-D). The TLC method has only been significantly modified by different 

researchers over the years, and it still relies on MEL staining on TLC plates. This method is still routinely 

employed today for screening novel organisms and discriminating between MEL variants generated.[16] 

Finally, NMR analysis of MEL can be used to establish the detailed structural type of MELs 

produced by each strain in study, so the structures deduced using GC, MS, or HPLC are confirmed. 

Typically, as it is shown in Figure 4, resonances of 1H NMR and 13C NMR are assigned to the atoms in 

the MEL structure, according to the different values of chemical shifts obtained. [17]       
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Figure 4 – 1H NMR spectrum and 13C NMR spectrum of MEL-A. (a) 1H signals at 0 to 7.0 ppm and (b) 13C signals 

at 0 to 180.0 ppm. [17] 

 

2.2 . MEL producers 

 The use of yeasts in bioprocesses can be considered one of the most relevant tactics in 

industrial biotechnology. Microorganisms of the Ustilaginaceae family are regarded as a viable source 

for numerous biotechnologically value-added compounds. These basidiomycetous fungi, which include 

both plant-pathogenic smuts and non-pathogenic yeasts, have been demonstrated to produce a variety 

of enzymes, carbohydrates, lipids, organic acids, and biosurfactants that could be commercially 

valuable. When compared to bacteria strains such as Bacillus sp., which are conventionally identifiable 

by lipopeptide biosurfactants, yeasts belonging to the Candida (currently referred to as Moesziomyces) 

genus and Ustilaginaceae family are extremely attractive, since they can reach high levels of 

biosurfactants obtained in diverse fermentation procedures. [11],[18] 

 Over the last few decades, mannosylerythritol lipid biosurfactants have aroused interest and, 

according to studies, MELs are generally produced by these anamorphic basidiomycetous yeasts, 

particularly by the fungi Ustilago maydis, in relatively low levels, and Moesziomyces spp. (previously 

Pseudozyma spp.), in relatively high numbers, in terms of substrate, fermentation environment, and 



8 
 

downstream processing.[15][19] MEL production is highly related to the taxonomic range of these fungi, 

the ones that generate primarily MEL-A, such as P. antarctica, P. aphidis, P. rugulosa, and P. 

parantarctica, are closely related on a phylogenetic tree branch, as can be seen in Figure 5. [20]  

 

 

Figure 5 – Molecular phylogenic tree constructed using rRNA gene and sequences of the genus Pseudozyma and 

Ustilago. P. rugulosa: currently referred as M. rugulosus; P. aphidis: currently referred as M. bullatus; P. antarctica: 

currently referred as M. antarcticus; P. parantarctica: currently referred as M. parantarcticus. [20] 

 

2.2.1. Ustilago 

 As previously mentioned, mannosylerythritol lipids are mostly synthesised by strains of the 

genus Moesziomyces, although they are also produced by Ustilago maydis. In fact, the MEL 

biosynthesis pathway was first discovered in the fungus U. maydis and was just later discovered in 

Moesziomyces/Pseudozyma spp. Within the Ustilaginomycetes class, U. maydis is a model organism 

for plant pathogenic smut fungus. [16]  

 Corn smut disease (“huitlacoche”) is caused by this basidiomycete fungus, which causes 

tumours to grow on the cob of the maize plant. The fungus Ustilago maydis has a dimorphic life cycle: 

during the saprophytic stage, it grows as budding yeasts (haploid); when two compatible cells mate, the 

dikaryotic phase (mycelia) emerges, invading the host tissues and creating tumours (galls) where spore 

generation occurs. [21] 

 The genome of U. maydis has been thoroughly described, and genetic tools for its molecular 

biological study as a model microorganism of plant pathogens have been established. Comparative 

genomic and transcriptome studies between U. maydis and a strain belonging to Moesziomyces 

species, M. antarcticus, have indicated that the gene expression pattern of M. antarcticus differs 
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dramatically of U. maydis under certain conditions, particularly when oil is used as a substrate in MEL 

biosynthesis. According to this study, even if the gene expression profiles of the two species diverge, 

they are closely related at the genome level, since the genome organisation and gene content are almost 

identical. [12]  This is relevant to its oleaginous character and in Figure 6 is highlighted the phylogenetic 

relationship of the two species.   

 
Figure 6 – Maximum likelihood phylogeny showing phylogenetic positioning of Ustilago maydis and Pseudozyma 

antarctica T-34 (currently referred as Moesziomyces antarcticus) strains. [22] 

 

 Since it has been demonstrated that MEL biosynthesis can be customised by the 

complementation of genes from other related species, genome sequencing is a powerful method for 

identifying probable orthologs of MEL biosynthesis genes in other species. [23] The U. maydis genome 

(20.5 Mb) is larger than the M. antarcticus genome (18.0 Mb, predicted from the size of total length of 

scaffolds). While the genomic sequence of M. antarcticus was assembled together into 27 scaffolds, U. 

maydis contains 23 chromosomes. Despite only having an average amino acid identity of 72.0% for 

predicted proteins, the genomes of M. antarcticus and U. maydis show a remarkable degree of synteny. 

There was considerable homology between 5987 M. antarcticus genes and 5707 U. maydis genes, as 

well as 5,707 of the U.maydis genes showed significant homology to gene(s) of M. antarcticus, with an 

overall estimated number of 5482 orthologous genes between the two organisms. [12,24] 

Therefore, orthologous genes corresponding to gene clusters associated with the plant invasion 

in U. maydis are partially conserved in the M. antarcticus genome. These findings imply that, except 

from the essential genes for U. maydis' plant pathogenicity, the genome organization and gene sets of 

M. antarcticus are nearly identical to those of U. maydis. Nonetheless, the efficiency of MEL production 
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varies across the two organisms, with M. antarcticus using vegetable oils to produce MEL at a faster 

rate than U. maydis, despite the fact that they share a significant of chromosomal content. Therefore, 

knowing that they reach distinct productivity under oily conditions, it is possible to conclude that the gene 

expression profiles of the two fungal species are different. [12,25] 

2.2.2. Moesziomyces  

 Pseudozyma sp. is the most well-known MEL-producing species in the family of fungi 

Ustilaginaceae, which was initially classified as a genus of anamorphic and asexually reproducing 

yeasts, based on physiological and morphological similarities. The majority of the genetic techniques 

adopted for Pseudozyma or, as it is currently classified, Moesziomyces species, were developed 

regarding the model organism U. maydis, since it is a similarly related phytopathogenic.[16] 

 In comparison to the plant-pathogenic U. maydis genome, a strain of the Moesziomyces 

species, non-pathogenic M. antarcticus, has highly conserved synteny, and more than 80% percent of 

its genes are orthologous to those of U. maydis, hence these strains are quite similar. In addition to the 

relevance of understanding gene expression in M. antarcticus or improving genetic engineering and 

commercial applications, knowledge of fatty acid metabolism will lead to more effective ways of using 

feedstocks to produce functional bio-based materials. [12] 

 The physiological role of MEL in these microorganisms is still unknown, however, some 

research has shown that they can act as emulsifiers for uptake of lipophilic substrates, as a carbon 

storage molecule, and for surface colonisation via adherence to plant surfaces, cell morphology, or 

temperature tolerance. Furthermore, when carbon sources of hydrophobic nature are present, MEL 

formation is greatly induced. Moreover, MEL can be a natural form of protection against powdery 

mildews because these organisms are mostly segregated from plant surfaces. In addition, numerous 

Moesziomyces species have been found to have biological activity against biodegradable plastics, 

which are commonly employed in industrial operations, and have been demonstrated to release 

diacylated MEL in large concentrations, with higher substrate yields and productivities than previously 

described species. [16] 

 Different forms of MELs are produced by this type of yeast, and the pattern of production is 

largely dependent on the producer. MEL-A (the main component, representing more than 70% of all 

MELs), MEL-B, and MEL-C are mixtures of types of MELs regularly produced in M. antarcticus, M. 

bullatus, and M. rugulosus. [22]  

 The basidiomycetous yeast Moesziomyces antarcticus (formerly known as Pseudozyma 

antarctica) was isolated in an Antarctic sediment sample and belongs to the Ustilaginales order 

(Ustilaginomycetes class and Ustilaginomycotina subphylum).[26] The importance of MEL for 

Moesziomyces antarcticus low-temperature endurance was demonstrated, and MEL was also proposed 

as a carbon storage material similar to triglycerides in this strain. Moesziomyces antarcticus was the 

first-known MEL producer, producing mainly MEL-A, and is asexually typified but closely related to the 
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smut fungus Moesziomyces bullatus (order Ustilaginales, previously Pseudozyma aphidis). [20] [27] 

This strain is shown to be able to synthesize MEL only from hydrophobic sources, not water-soluble 

ones, and has been described to produce large amounts of MELs. [28] However, M. antarcticus and M. 

bullatus revealed significant differences in substrate-dependent induction of MEL synthesis compared 

to that of U. maydis. [29]  

 

2.3. Metabolic pathways of MEL production  

 The yeasts previously mentioned, Ustilaginomycetes, have a very complex cellular metabolism 

since they are eukaryotic fungi. The numerous pathways described in that metabolism can lead to 

commercially valuable molecules, including MEL.  

 Hydrophilic and hydrophobic precursor molecules are required for the formation of the MEL 

glycolipid. The sugar core of MELs is produced by binding an erythritol molecule, which is synthesised 

through the pentose phosphate pathway (PPP), onto GDP-mannose, obtained via glycolysis, from 

several hydrophilic precursors (Figure 7a). The hydrophobic tail is formed of fatty acids that can be 

added to the culture medium, as different types of oils, and integrated into the MEL or synthesized de 

novo by the microorganism. Partial peroxisomal β-oxidation, also referred to as chain-shortening 

pathway of fatty acids, is another step of MEL metabolism of great importance, giving MEL’s unique 

fatty acid patterns, since it provides fatty acids for MEL’s acylation (Figure 7b). [30] 

 

Figure 7 – Metabolic pathways involved in the production of intermediates for MEL accumulation, (a) GDP-mannose 

and erythritol and (b) Acyl-CoA and acetyl-CoA, in Ustilago maydis. [30] 

 Finally, MEL synthesis is established via mitochondrial β-oxidation, the glyoxylate cycle, and 

gluconeogenesis, which converts the corresponding precursor molecules to the final product and 

establishes the link between fatty acid and sugar metabolism. Its regulation will be addressed in the 

following chapters, and a review of the most important metabolic pathways already stated can be found 
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in Figure 8, which was constructed using U. maydis as the model organism and compared to genomic 

data for various MEL-producing strains. [16] 

 
Figure 8 – Detailed metabolic pathways that lead to the formation of MEL from various substrates in Ustilago 

maydis. [16]  

 

 

2.3.1. Glycolysis/Gluconeogenesis 

 The first step in MEL metabolism is the formation of mannosylerythritol (ME) from erythritol 

mannosylation, which is most likely mediated by a glycosyltransferase, the Emt1 (erythritol-mannosyl-

transferase), that codes for a protein with similarity to prokaryotic glycosyltransferases involved in the 

biosynthesis (Figure 9). [31]  MEL-producing cells are reported to yield large amounts of the intermediate 

mannosylerythritol, indicating that this is an essential stage in MEL generation. [32] 

Glycolysis pathway, as shown previously in Figure 7a, encodes a series of reactions that 

converts sugars like glucose or fructose, as the carbon source, into a succession of biomass component 

precursors, leading to the production of pyruvate as the final metabolite of this pathway. Specifically, it 

works by converting one 6-carbon glucose molecule into two 3-carbon pyruvate molecules, through a 

series of ten chemical reactions. In these reactions, substrate-level phosphorylation produces a net two 

molecules of adenosine triphosphate (ATP), as well as two molecules of reduced nicotinamide adenine 

dinucleotide (NADH).      
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Figure 9 – Mannosylerythritol lipids biosynthetic route. Emt1p (mannose/erythritol transferase); Mac1p and Mac2p 

(acyl-transferases); Mat1p (acetyl-transferase); Mmf1p (predicted MEL transporter). [25]  

 In particular, the synthesised MELs production starts when a monosaccharide transporter 

carries glucose into the cell, which is then activated by phosphorylation and transformed to fructose-6-

phosphate. Fructose-6-phosphate can be glycolyzed or isomerized to mannose-1-phosphate and 

activated, resulting in GDP-mannose, which is the initial precursor of MEL. When applying plant oils, as 

the lipid source, glycerol is produced in the broth by lipase or esterase activity. However, as large 

amounts of glycerol, such as from biodiesel production, are available for fermentation, it can be supplied 

in addition. Glycerol is transformed to glyceraldehyde-3-phosphate when it is transported into the cell. 

Following that, it can pursue the same metabolic pathways as previously stated for other substrates, but 

through the reverse direction of the reactions from glycolysis, via the gluconeogenic pathway. [16]  

 To have a comparison between the two main producers of MEL, highlighted in the previous 

chapter, a recent study, comparing the gene expression intensities from M. antarcticus T-34 and U. 

maydis UM521, was analysed. Regarding the glycolysis step, when in oily conditions, the majority of the 

genes were highly expressed in M. antarcticus, whilst those in U. maydis were suppressed (Figure 10). 

These results indicate that M. antarcticus central metabolic pathways, such as glycolysis and the 

tricarboxylic acid cycle (TCA), could be related to MEL production, whereas the transcriptional regulatory 

properties are comparable to MEL biosynthesis genes. [25]  
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Figure 10 – Comparison of the expression profiles of genes encoding enzymes that participate in glycolysis and 

the tricarboxylic acid cycle under oily conditions in M. antarcticus T-34 (A) and U. maydis UM521 (B). M-values in 

the central metabolic pathway of M. antarcticus T-34 and U. maydis UM521. Positive value, in reddish colours: 

genes induced in the presence of vegetable oil. Negative value, in greenish colours: genes repressed in the 

presence of vegetable oil. Value equal to zero: genes with no activity in the presence of vegetable oil. [25]  

 

2.3.2. Tricarboxylic Acid Cycle 

 Tricarboxylic acid cycle, also named Kreb’s cycle or citric acid cycle, is a cyclical pathway where 

acetyl-CoA (AcCoA) is oxidized to generate energy. This metabolite can be obtained by oxidative 

decarboxylation of the final product of glycolysis, pyruvate, considering that it is a cofactor for pyruvate 

carboxylase, which also is the first enzyme of the gluconeogenesis pathway. [33] Pyruvate enters the 

matrix of mitochondria, where TCA occurs, and is converted in AcCoa which, together with oxaloacetate 

(OAA), produces citrate in the TCA cycle. [34] 

 In this cycle a mole of AcCoA, originated through oxidation of long-chain fatty acids, enters the 

cycle, two moles of CO2 are evolved, and a mole of OAA is regenerated in a single cycle turn, as it is 

shown in Figure 11. [35] Acetyl-CoA is required for a variety of metabolic processes in the cell, including 

energy generation in the citrate cycle, as well as de novo fatty acid synthesis. In fungal cells, it represents 

the linkage between sugar and fatty acid metabolism (Figure 12). [16] 

Moesziomyces antarcticus 
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Figure 11 – Tricarboxylic acid cycle. The asterisks indicate the carbon distribution in a single cycle turn, starting 

with acetyl-CoA. At the succinate stage, notice the randomization of carbon atoms (adapted from [35]). 

  

 
 

Figure 12 – Pathways involved in AcCoA synthesis (adapted from [36]). 

 

2.3.3. Pentose Phosphate Pathway 

 Nonetheless, the carbons provided by glucose for subsequent glycolysis and TCA are not 

exhausted in these pathways. The pentose phosphate pathway (PPP) provides all organisms with a 

supply of nicotinamide adenine dinucleotide phosphate (NADPH) for use in reductive biosynthesis, such 

as the production of fatty acids, and it also generates five-carbon sugars, becoming an important 

pathway in MEL metabolism. 

TCA 

Fatty acids synthesis 

Glyoxylate 

Acetyl-CoA 
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 In the nonoxidative branch of this pathway, an enzyme connects PPP to glycolysis and provides 

sugar phosphates to the main carbohydrate metabolic pathways, along with transaldolase (Taldo1). 

Glucose is phosphorylated to create glucose-6-phosphate (G6P), a glycolysis or pentose phosphate 

pathway intermediate. G6P is converted to ribulose-5-phosphate in the pentose phosphate pathway, 

and this metabolite is transformed to xylulose-5-phosphate or ribose-5-phosphate by isomerization and 

epimerization processes (Figure 13).[37]  

 
Figure 13 – Diagram of the pentose phosphate pathway showing substrates and enzymes involved in it. Tkt: 

transketolase; Gpi1: glucose phosphate isomerase 1; G6pd2: glucose-6-phosphate dehydrogenase 2; Taldo1: 

transaldoase 1. [37] 

 

 Glyceraldehyde-3-phosphate, a glycolysis intermediate, and fructose-6-phosphate can both be 

supplied into the pentose phosphate pathway, resulting in erythrose-4-phosphate, a precursor of 

erythrose, which is then converted to erythritol.[16] Erythritol, when linked to active GDP-Mannose, 

results in mannosylerythritol (ME).  

2.3.4. Fatty acids Synthesis  

 Mannosylerythritol needs to be acylated with fatty acid chains to become the final product, 

mannosylerythritol lipid. The synthesis of fatty acids initiates when malonyl-CoA, the product of the 

acetyl-CoA carboxylase (ACC) reaction with AcCoa, coming from the TCA cycle, is converted to 

malonyl-ACP. This conversion is performed by a transacylase (FabD), and the next step, which uses 

short acyl-CoA primers as substrates, is catalysed by the enzyme β-ketoacyl ACP synthase III 

(FabH).[38]  The elongation of the developing acyl chains is achieved in four steps, which are catalysed 

by the enzymes shown in Figure 14, leading to the production of the metabolite acyl-ACP. This pathway 

is also nominated as type II fatty acid biosynthetic pathway or chain elongation. [16] 
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Figure 14 - Initiation and elongation cycle of fatty acid biosynthesis. ACC: acetyl-CoA carboxylase; FabD: 

malonyl-CoA transacylase; FabH: β-ketoacyl ACP synthase III; FabB or FabF: β -ketoacyl ACP synthase I or II, 

respectively; FabG: β-ketoacyl ACP reductase; FabZ: β -hydroxyacyl-ACP dehydrase; FabI: enoyl reductase. [38] 

 When vegetable oil was used as the substrate instead of glucose in the experiment previously 

mentioned, with M. antarcticus and U. maydis genes, the induction ratios of the genes for fatty acid 

synthesis were decreased in both strains. Because fatty acids must be generated from glucose to meet 

physiological demands and for MEL production (Figure 15), that findings suggest that fatty acid 

synthesis is required just in the presence of glucose. [25] The opposite happens under oily conditions, 

since this substrate can be degraded and fatty acids are obtained via the beta-oxidation pathway, which 

will be explained in the next chapter, and not from fatty acid (FA) synthesis. 

 

Figure 15 - Metabolic pathways for the biosynthesis of mannosylerythritol lipids (MEL) from glucose. PPP: pentose 

phosphate pathway; FA: fatty acids; TAG: triacylglyceride. [39] 
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2.3.5. β-oxidation  

 Different fatty acid pathways exist in microorganisms, each leading to the synthesis of MEL or 

the storage of intracellular triacylglycerides. Supplementing plant oils into the culture medium is the most 

typical technique to supply FAs for MEL synthesis, with the cleavage of triacylglycerides (TAGs) into 

FAs and glycerol as the initial step, by extracellular lipases or esterases. Fatty acids are directed to lipid 

metabolism while glycerol is integrated into the above-mentioned pathways, particularly at 

gluconeogenesis. [16] 

 Thus, either complete de novo synthesis from acetyl-CoA (type I fatty acid biosynthetic 

pathway), chain-elongation from medium-chain acids (described in the previous chapter), or direct 

integration (type III fatty acid biosynthetic pathway), as seen in other oleaginous yeasts, are likely to 

play a role in intracellular triacylglyceride production. In type I fatty acid biosynthetic pathway, the FA 

parts of the MELs can be formed via beta-oxidation (β-oxidation), with long-chain acids being broken 

down and FAs composition of MEL dependent on the oil supplied as carbon source. [12] 

 Findings on MEL production by M. antarcticus demonstrated that the FAs in MEL are not 

produced by de novo synthesis, but rather are intermediates in a β-oxidation pathway that can take 

place in two distinct organelles. In M. antarcticus, as well as in U. maydis, genes involved in peroxisomal 

and mitochondrial β-oxidation were increased, but the induction rates of genes involved in fatty acid 

synthesis were inhibited in both strains, under oily circumstances. This research suggests that both 

strains degraded vegetable oil via the β-oxidation pathways and that all the genes involved in the 

metabolism, with the exception of lipid metabolism genes, were expressed alongside MEL biosynthesis 

genes, implying that M. antarcticus efficiently derived energy from vegetable oil via respiratory 

metabolism. [25] 

In an experiment to better understand MEL production, cerulenin (a potent inhibitor of de novo 

fatty acid synthesis) was used and resulted in the production of MELs remaining unaffected. In contrast, 

the use of 2-bromooctanoic acid (a potent inhibitor of the fatty acids β-oxidation pathway), blocked the 

synthesis of MELs, with the degree of inhibition directly correlated with the chain length of the substrate 

used. These findings revealed that the production of TAGs involved more than one of the three fatty 

acids biosynthetic pathways, and that the choice of pathway is influenced by the chain length of the 

substrate.[23] 

2.3.5.1. Complete β-oxidation  

 The β-oxidation pathway that occurs in mitochondria is also named as complete de novo 

synthesis, or type I fatty acid biosynthetic pathway. In this pathway fatty acids have to be generated 

from acetyl-CoA, leading to MEL production from non-lipidic substrates. 

 However, it is reported in the literature that medium-chain fatty acids are derived through the 

chain-shortening pathway in M. antarcticus MEL production, and that de novo synthesis is not required. 
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When cells were cultured on long-chain fatty acids, suppression of de novo fatty acid synthesis had only 

a minor influence on MEL synthesis, however growth was partially reduced. In fact, blocking de novo 

synthesis pathway increased MEL formation slightly, likely by channelling carbon flux to MEL synthesis. 

With or without this inhibitor, the fatty acid distribution in MEL was identical. [16] 

2.3.5.2. Partial β-oxidation  

While limiting de novo fatty acid synthesis had little effect on MEL production, adding a partial 

β-oxidation inhibitor to M. antarcticus resting cells reduced MEL generation. As a result, the long-chain 

substrate (C18) had the highest inhibition rate. Three reported chemicals that limit β-oxidation of fatty 

acids are 2-bromooctanoic acid (BOA), thioridazine, and 4-pentenoicacid. [40] In Figure 16, the already 

mentioned presupposed pathways, responsible for the shortening of fatty acid chains in MEL production, 

are represented.  

 

Figure 16 – MELs presumptive chain-shortening pathway in Moesziomyces antarcticus. [41] [40] 

 Peroxisomal activation of acyl-CoAs, also known as partial β-oxidation or chain-shortening 

pathway, is required for the activation of long-chain fatty acids and acetate as a growth-dependent 

carbon source.[34] This partial β-oxidation, which takes place in cellular peroxisomes, is important for 

MEL specific fatty acid patterns. In contrast to total β-oxidation, which occurs in the mitochondrion, the 

peroxisomes are key organelles for secondary metabolite synthesis in fungi in general. 
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Two acyl-CoA oxidases, two thiolases, and two bifunctional proteins are involved in the 

peroxisomal beta-oxidation of the various acyl-CoA esters. According to current knowledge, the key 

enzyme responsible for oxidating very long-chain fatty acids (VLCFAs) and dicarboxylic acids (DCAs) 

is acyl-CoA oxidase 1 (ACOX1), as shown in Figure 17. [42] 

 

        

Figure 17 – (A) Substrates that are exclusively known to be oxidized in peroxisomes, together with the transporters 

and enzymes involved in their degradation. (B) Diagram showing the peroxisomal enzymes responsible for the 

degradation of very long-chain fatty acids (VLCFAs). (adapted from [42]) 

Recently, it was discovered that, in U. maydis, deletion of two genes involved in peroxisomal β-

oxidation resulted in a significant reduction in MEL production, showing that the chain-shortening 

pathway and its localization in peroxisomes are critical for MEL biosynthesis. [16] The 

compartmentalization in peroxisomes of MEL biosynthesis is evolutionary conserved and necessary for 

the assembly of MELs with the typical acylation pattern. This location of MEL biosynthesis is required 

not only for the creation of the natural spectrum of MELs, as well as for the assembly of several 

glycolipids in a single cell. [8] 

 

2.3.6. MEL Synthesis  

The MEL synthesis is catalysed by different enzymes and the encoding genes for these 

enzymes are clustered together. The gene cluster is comprised of five genes that code for a 

glycosyltransferase (Emt1), two acyltransferases (Mac1 and Mac2), one acetyltransferase (Mat1), and 

one cellular exporter (Mmf1), which have first been discovered in Ustilago maydis.[14] As a result, the 

complete assembly of the MEL molecule consists of four major steps, described in Figure 18. 

The glycosyltransferase Emt1 (erythritol-mannosyl-transferase) connects activated GDP-

mannose and erythritol for the first time and this glycosylation reaction takes place in the cytosol, which 

has an abundance of sugar precursors. The resultant mannosylerythritol (ME) is subsequently acylated 

with two fatty acid chains at the mannose moiety’s C2′ and C3′ positions, generating diacylated MEL-D. 

A B 
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The two acyltransferases Mac1 and Mac2 (mannosylerythritol-acyl-transferases), catalyse these two 

acylation processes, which require activated fatty acids in the form of acyl-CoA. Both enzymes are 

considered to be highly regioselective, preferring distinct acyl-CoA chain lengths. [32]   

Because deletion of either Mac1 or Mac2 lead completely disabled MEL synthesis, this acylation 

process appears to be required for secretion. Moreover, Mac1 and Mac2 were discovered to have 

particular targeting sequences that coordinate their localization in peroxisomes. Chain-shortening of 

fatty acids, the peroxisomal β-oxidation, also occurs in this organelle, so the colocalization of fatty acid 

metabolism and acyl-transfer into MEL makes this compartmentalization understandable. [8] 

  

Figure 18 – The biosynthetic proposed metabolic pathway for MEL production from plant oil. Chain-shortened 

hydroxy fatty acids from oil get esterified at C3′ of the mannose moiety by action of an acyltransferase Emt1: 

erythritol/mannose transferase; Mac1 and Mac2: acyltransferases; Mat1: acetyltransferase; Mmf1: membrane-

bound transporter. (adapted from  [7,14] [43])  



22 
 

 Subsequently, the single enzyme Mat1 (mannosylerythritol-acetyl-transferase), which requires 

acetyl-CoA as a substrate, acetylates the MEL-D molecule to variable degrees at C4′ and C6′. The three 

acetylated versions generated, MEL-A, MEL-B, and MEL-C, are produced in different quantities 

depending on the activity or regioselectivity of Mat1 in distinct strains. This enzyme is present at the 

plasma membrane, where it catalyses the acetylation of MEL-D before the membrane-bound transporter 

Mmf1 exports MEL produced. MEL can be exported from the cell by this membrane transporter Mmf1 

(mannosylerythritol-major-facilitator protein), which belongs to the major facilitator protein superfamily. 

Mmf1 is thought to have poor selectivity because all four MEL variants can be identified outside the cell. 

[16] 

 In M. antarcticus, high expression of the MEL biosynthetic gene cluster was seen in oily 

conditions, leading to the conclusion that it may be able to synthesize MELs, whereas U. maydis gene 

cluster expression is susceptible to a variety of nutrients, including carbon and nitrogen sources. [12] 

The gene cluster for MEL biosynthesis was strongly expressed regardless of whether the carbon source 

in M. antarcticus was glucose or oil, leading to the conclusion that the metabolism of MEL should be 

studied in this organism, rather than in U. maydis. 

 With this, it is possible to understand that the pathways of MEL synthesis should be studied in 

detail, and a model must be designed for predictions of the metabolism routes followed, according to 

the substrate given to the organism. To forecast genetic modifications that rearrange the metabolism 

toward the generation of the compound of interest, metabolic modelling is required, which is a in silico 

approach. Even if a Ustilago maydis general metabolic model already exists, at the moment there is not 

a described MEL metabolism model for M. antarcticus. 

2.4. Metabolic Modelling 

 Biological research, in general, can be aided by metabolic and regulatory models. Under a 

variety of conditions, computational assumptions can be compared to experimental observations, and if 

there are discrepancies, it is because the model is incomplete or erroneous in some way. These 

discrepancies can be investigated, assisting in the discovery of novel biological characteristics, where 

the most up-to-date genome-scale models are usually used. [2] 

 Thus, the implementation of experimentally determined constraints can be used to convert a 

metabolic model into a condition-specific model. Constraints can be established by defining flux bounds 

for each reaction, for example. In a metabolic model, limitations can be applied to simulate specific 

cellular conditions, such as biomass maintenance requirements, environmental limits, or maximum 

enzyme capabilities, that can predict the outcome at in vitro experiments. [44] 

 Mathematical modelling is therefore used to study the dynamic interactions between various 

components of a biological system to better understand the system’s overall behaviour. Hypothesis 

formulation and the application of prediction models are becoming increasingly important in 

understanding the mechanisms underlying complex biological systems, disorders, and drug actions, 

thanks to high-throughput omics data and network analysis. [45] 
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Reconstructions of cellular metabolism for a wide range of microorganisms and certain 

mammalian genomes are publicly accessible. These reconstructions, which are genome-scale, aim to 

include both reactions supported by direct experimental evidence and those implied by the genome 

annotation. Typically, they are designated genome-scale metabolic (GEM) networks, frequently 

reconstructed to include all identified metabolic genes and pathways in a given organism. Thereby, the 

metabolic reactions that are active in the organism at any particular time are a superset of these 

reconstructions. [46] 

2.4.1. Constraint-based modelling and Flux Balance Analysis 

 Models are physical systems converted in a mathematical form and can be characterised by 

assumptions, committing certain understanding. Mostly, models are approximations of reality, or 

representations of data chosen to focus on essential features of the cell or organism in study, that help 

to understand large and complex systems. Models are built to make predictions, understand the system 

under research, and can explain how the system behaves if some conditions change, which enables 

the prioritisation in the laboratory experiments that should be done. The objective is to make well-

founded and testable predictions of biological systems. An accurate metabolic reconstruction 

subsequently can be adjusted as a computer model and used for a growing variety of applications. To 

assess a metabolic network’s capabilities, flux balance analysis (FBA) and other constraint-based 

methodologies might be applied. The biomass reaction can be optimised to the maximum value in FBA 

by using linear programming software to simulate growth. The steady-state mass conservation of 

metabolites assumption, which dictates that metabolite concentrations derivative is zero, implying that 

the system does not have an accumulation of compounds, imposes the main constraints in FBA and the 

mathematical issue is transformed into a linear system. [2] [47] 

 Thus, in the FBA approach, the metabolic network is defined as a linear programming 

optimization problem. The calculation of metabolite fluxes through a metabolic network is achieved by 

constraint maximisation of an objective function. A stoichiometric matrix (S) represents the metabolic 

reactions mathematically, having n rows, where n is the number of metabolites in the model, and m 

columns, which are the number of reactions. The stoichiometric coefficient of each metabolite, for each 

reaction, is filled into each position of the matrix (Figure 19), with this matrix and the constraints defining 

a linear system of equations, which is solved by linear programming. [48] 

 Stoichiometric modelling is a type of mathematical modelling that is applied to all approaches 

that use a metabolic network based on reaction stoichiometry to describe cell metabolism. However, 

other inputs, such as limitations, are also required, with the underlying biochemical network’s 

stoichiometry constraining the solution in FBA. The fundamental disadvantages of these models are the 

lack of regulatory and kinetic input, which restricts the precision of the predictions, and that it only 

predicts fluxes, rather than metabolite concentrations. [49] [50] 
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Figure 19 – Metabolic networks represented stoichiometrically. (a) A graphical representation of glycolysis 

reactions in E. coli. (b) The matching stoichiometric matrix (S). Each column corresponds to a specific reaction and 

each row to a specific metabolite. An exchange reaction is shown in the last column. (c) Inequality constraints, 

reaction’s upper (UB) and lower (LB) boundaries. [51] 

  

Constraint-based metabolic models can be employed in synthetic biology and metabolic 

engineering fields due to their predictive capabilities. Constraint-based models are particularly useful 

since they can forecast when a specific metabolite will be overproduced and released, excluding 

impossible behaviours or impossible flux solutions. By adding or deleting reactions to the network, gene 

knockouts and knock-ins may be simulated, and the behaviour of the modified network can be predicted 

through FBA. Because FBA considers the complex interacting effects that a knockout has on all 

pathways at the same time, these model-based predictions are very accurate. Likewise, the range of 

possible states a biochemical reaction system might achieve can be defined by a variety of physical, 

chemical, and biological constraints, with these states correlating to distinct flux distributions through 

the metabolic network. [51] 

2.4.2. Program and tools used in metabolic modelling based on FBA 

 Systems biology modelling efforts result in models with an ever-increasing number of 

components and interactions. As these models get more complex, software that provides sophisticated 

numerical analysis tools to study their behaviour is required. MATLAB is a programming and numeric 

computing platform with a large number of auxiliary toolboxes, a standard in many scientific fields, 

commonly used in systems biology. It includes a user-programmable platform with several state-of-the-

art mathematical and numerical methods, as well as a simple, but powerful, high-level scripting 

language, that minimises the programming overhead typically associated with independent software 

applications.[52] 
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 The toolboxes available for this program provides a flexible and open environment for systems 

biologists to cope with different ideas, develop and share new algorithms, and create applications for 

the study and modelling of biological and biochemical systems.[52] 

 A wide range of methodologies for assessing genome-scale models have been developed, and 

the methods have been used to investigate a growing variety of biological problems. FBA can be used 

to analyse constraint-based models by the constraint-based reconstruction and analysis (COBRA) 

strategy. COBRA is a modelling technology that creates manually curated stoichiometric network 

reconstructions. Models can then be constructed and examined using equality and inequality 

constraints, as well as computing functional states. Mass conservation and thermodynamics (for 

directionality) are among the constraints, but so are the constraints based on experimental procedures 

and regulatory ones. [40] [43] 

 COBRA is a framework for mechanistic integrative analysis that can be applied to any biological 

system having prior mechanistic information, including systems with inadequate information, as 

mechanistic models describe cellular behaviour based on simplifications.[53] The requirement for easy 

reproducibility and request for usage of COBRA methods was recognized early in the creation of the 

COBRA framework. This requirement prompted the creation of COBRA Toolbox, an open-source 

software tool that operates in the MATLAB environment and allows for quantitative metabolic 

phenotyping utilising a variety of COBRA methodologies. [1] 

A tool that allows visualization of the fluxes through the different metabolic pathways present in 

the model is Escher, a web application for visualizing data on biological pathways. This application 

enables the users to quickly construct new pathway maps, creating paths semi-automatically by using 

Escher's pathway suggestions, which are based on user data and genome-scale models. By employing 

rules that specify which enzymes catalyse each process, users can see information related to genes or 

proteins on the associated reactions and pathways, using the associated reactions and pathway data. 

A source with the names, stoichiometries, and associated genes for each metabolic reaction in 

an organism is required in order to construct a pathway map. A COBRA model, which is a compilation 

of all the processes, metabolites, and genes that are known to exist in an organism, provides this 

information. Escher might be used to display pathways like gene expression and membrane 

translocation, which is added into COBRA models (Figure 20). Although COBRA models have typically 

focused on metabolism, the COBRA modelling technique can be used to any biological reaction network. 

[54] 
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Figure 20 – The structure of the Escher project. Escher maps can be created by users or retrieved from the 

Biochemical, Genetic and Genomic (BiGG) database. COBRApy is used to produce COBRA models. On the Escher 

website or locally via one of the several Python package methods, the Escher web application can be viewed. 

(adapted from [54]) 

While FBA provides predictions for metabolic networks with thousands of components, making 

important changes in FBA solutions challenging to detect, the easiest method to understand FBA is to 

explore simulations interactively by changing parameters and receiving real-time feedback. For 

beginners, understanding how FBA functions is challenging due to these difficulties. By adding on-going 

FBA calculations to the Escher program for pathway visualization, Escher-FBA, an extension of the 

Escher application, satisfies these requirements. In order to provide interactive FBA simulations within 

a pathway visualization, Escher-FBA creates the network and reaction data using the same input files 

as Escher. Without downloading any software or writing any code, users can also create high-quality 

figures, upload metabolic models, knock out reactions, modify objective functions, and set flux bounds, 

constraining specific reactions. Hence, it is feasible to reproduce several FBA simulations that lead to 

valid scientific theories.[55] 

 

2.4.3. In silico models 

 To stay consistent with genome sequencing and eliminate a major bottleneck in metabolic 

analysis, computational approaches for metabolic reconstruction must be able to generate models that 

require minimum curation, while yet accurately predicting metabolic phenotypes. The conversion of in 

silico models into mathematical models, which are utilised to predict physiological characteristics and 

states, is frequently an iterative process. The model is made publicly available and then modified with 

continuous input from the scientific community. [47] [56] 

 Biochemical network reconstructions are databases with biochemical, genetic, and genomic 

structures. The information obtained from biochemical characterization of processes and their 
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substrates is frequently used in these reconstructions. To discover the encoding enzymes responsible 

for each catalytic reaction, genetic research is also required. The fact that biochemical network 

reconstructions can be converted into a computational model makes them useful. As a result, the 

computer model may be used to answer a growing number of biological issues. In some cases, model 

predictions can be used to identify profitable pathways for experimental confirmation, as well as give 

qualitative and statistically correct projections of experiments. [2]  

 The outcome is an in silico forecast of steady-state flow through each reaction in the model, 

such as a prediction of the maximum optimal growth rate of the cell. Growth can be simulated under a 

variety of conditions, including aerobic and anaerobic circumstances, as well as growth on glucose or 

other substrates. By varying the limits on the exchange reactions that operate as sources of substrate 

and waste metabolites, different circumstances can be simulated as well.  

 Accessible, interoperable, and reusable in silico models are required for the study of complex 

system biology. BioModels, a repository for mathematical models, was created to provide a platform 

that supports universal sharing, easy access, and model reproducibility. The models submitted to 

BioModels are curated to ensure that the computational representation of the biological process is 

appropriate and that the simulated results are repeatable, as shown in Figure 21. Modelers benefit from 

BioModels as they have access to trustworthy and semantically enriched curated models in standard 

formats that are simple to share, copy, and reuse. [57] 

 

 

Figure 21 - Model curation workflow in BioModels database..[57] 

 After models are submitted to BioModels, they undergo a thorough curation process that 

includes reproducing literature results and annotating them with recognized ontologies or databases. 

SBML (Systems Biology Markup Language) models can be stored in the BioModels database and 

MATLAB can provide an interface for importing these models, with toolboxes that support this language, 

allowing models to be utilised. 
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2.4.4. MEL biosynthesis modelling and validation 

 Until the date, there is not any available in silico model for Moesziomyces antarcticus. For this 

reason, modelling of a current model, available for Ustilago maydis, has to undergo mathematical 

approaches that upgrade it. The goal is to have a MEL metabolic model for M. antarcticus, which 

revealed being able to use a variety of raw materials, such as crude vegetable oils, with mass production 

of MELs. This ability is important because allows lowering production costs, by utilising raw resources, 

which is crucial to extending industrial applicability. [12]  

 As so, the differences between the MEL metabolism in these two strains must be summarised. 

This is possible due to a research that compared the gene expression of both strains, which was covered 

in detail through the previous chapters related to the metabolic pathways.  

 Regarding the expression of genes giving oil as substrate, the genes involved in peroxisomal 

and mitochondrial β-oxidation were more induced in M. antarcticus T-34 than in U. maydis, at the same 

time that the induction ratios of the genes for fatty acid synthesis were suppressed in both strains. These 

results suggest that the vegetable oil is degraded via the β-oxidation pathway and that fatty acid 

synthesis was required in the presence of glucose, because fatty acid must be synthesized from glucose 

to supply cellular demands and for MEL biosynthesis, but not with oil as substrate. The principal 

difference between the two strains, already shown in Figure 10 - Section 1.3.1., is the induction of 

glycolysis and gluconeogenesis pathways in M. antarcticus, and the suppression of these pathways in 

U. maydis, as the consequent pathway, the TCA, as a similar induction ratio pattern (Figure 22). 

 

 

 

Figure 22 – Induction of genes associated with oil degradation and conversion, as well as primary metabolism. The 

M-value averages of genes responsible for MEL biosynthesis pathways: mitochondrial beta-oxidation, peroxisomal 

beta-oxidation, fatty acid synthesis, glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, and 

malate/pyruvate cycle are displayed. In orange is U. maydis UM521 and blue is P. antarctica T-34 (currently referred 

as M. antarcticus) values. Values below 0 represent less induction ratio, while values above 0 represent higher 

induction ratio, with vegetable oil as substrate, when compared with glucose as substrate (adapted from [25]).  
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3. Materials 

3.1. Laboratory Material 

Reagents: Agar (José M Vaz Pereira, S.A.),CHCl (Sigma-Aldrich®), D-glucose (Fischer), Heptanoic 

acid (Sigma-Aldrich®), KH2PO4 (Chem-lab), MgSO4 (Sigma-Aldrich®), NaNO3 (LabKem), Sulphuric acid 

(Sigma-Aldrich®), Yeast extract (Oxoid). 

Organic Solvents: Absolute ethanol, Acetone, Ethyl Acetate, Hexane, Isopropanol, Methanol, all from 

Fischer®; Acetyl Chloride from Fluka.  

Equipment: Autoclave (AJC, Uniclave 88); Centrifuge 1 (Sartorius 1-15P, Sigma, rotor 12000 rpm); 

Centrifuge 2 (Eppendorf®, 5810 R); GC (Hewlett Packard, HP5890); HPLC (Hitachi Elite LaChrom); 

Lyophilizer (Alpha 1-2 LD plus CHRIST®); Microscope (Leica DMLB); Oven 60ºC (Memmert); Oven 

80ºC (Memmert); Pipettes (Biopette PLUS / Eppendorf®); Shaking incubator 2000 (Optic ivymen 

system); Spectrophotometer (UH5300 Hitachi).  

 

3.2.   Softwares 

• COBRA Toolbox v3.0 [1] available from https://opencobra.github.io/cobratoolbox/stable/ ; 

• Escher version 1.7.1 [54] available from https://escher.github.io/#/ ; 

• Microsoft® Excel® for Microsoft 365 MSO commercially available from 

http://microsoftstore.com; 

• MATLAB R2021a Update 5 (Mathworks) commercially available from http://mathworks.com. 

 

3.3. Databases  

• Biomodels [57] available from https://www.ebi.ac.uk/biomodels/ ; 

• Github available from https://github.com/ ; 

• KEGG [58,59] at http://kegg.jp/ (last date of access: 28.10.2022). 

 

3.4.  Genome-scale metabolic model  

Ustilago maydis genome scale metabolic model (GSMM), iUma22, for simulation of metabolic 

activities. Available from https://github.com/iAMB-RWTH-Aachen/Ustilago_maydis-

GEM/blob/master/code/iUma22_EscherMapping.ipynb. [60] 

 

 

https://opencobra.github.io/cobratoolbox/stable/
https://escher.github.io/#/
http://microsoftstore.com/
http://mathworks.com.uk/
https://www.ebi.ac.uk/biomodels/
https://github.com/
http://kegg.jp/
https://github.com/iAMB-RWTH-Aachen/Ustilago_maydis-GEM/blob/master/code/iUma22_EscherMapping.ipynb
https://github.com/iAMB-RWTH-Aachen/Ustilago_maydis-GEM/blob/master/code/iUma22_EscherMapping.ipynb
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4. Methods  

4.1. MEL production 

4.1.1.  Microorganisms and maintenance  

Mannosylerythritol lipids were produced by Moesziomyces yeast strains, Moesziomyces 

antarcticus PYCC 8538T (CBS 6678) and Moesziomyces bullatus (previously referred as M. aphidis) 

PYCC 5535T (CBS 6821) provided by the Portuguese Yeast Culture Collection (PYCC), CREM, 

FCT/UNL, Caparica, Portugal. The strains were plated in yeast malt (YM) agar (yeast extract 3 g/L, malt 

extract 3 g/L, peptone 5 g/L, D-glucose 10 g/L, and agar 20 g/L) and incubated for 3 days at 30°C. Stock 

cultures of each species were prepared from the plates, by growing each strain in liquid medium and 

stored in 20% (v/v) glycerol aliquots at - 80ºC. 

4.1.2. Media and cultivation conditions  

An inoculum was prepared according to the procedure referred to in the literature. [61] The 

glycerol stocks of M. antarcticus and M. bullatus were transferred to an erlenmeyer flask, with 1/5 of the 

working volume (50 mL) of a mineral medium consisting of 3 g/L NaNO3, 0.3 g/L MgSO4.7H2O, 0.3 g/L 

KH2PO4, 1 g/L yeast extract (OXOID) and 40 g/L D-glucose, at initial pH 6.0. All were previously sterilized 

in an autoclave at 121 °C and 1 bar, for 20 minutes.  

The inoculum was then incubated in an orbital (Shaking incubator 2000) for 48 hours at 200 rpm 

and 27°C. After, 10% (v/v) of the inoculum was used to start the fermentation in fresh media. Both the 

inoculum and the fermentations were conducted in 250 mL erlenmeyer flasks, with a working volume of 

50 mL.  

Initially, three conditions were tested, for each strain, with 40 g/L of D-glucose, 20 g/L of 

galactose, and 40 g/L of lactose, all added at day 0. Duplicates were made for each experiment. After, 

10% (v/v) of the inoculum was used to start the fermentation in fresh media, with five different conditions 

of glucose concentration, 5 g/L, 20 g/L, 40 g/L, 80 g/L, and 120 g/L, with an initial OD below 0.1 in all 

the 250 mL erlenmeyer flasks. The inoculated erlenmeyer’s were shaken at 200 rpm at 27°C up to 168 

hours. 

For the second set of experiments, an initial 40 g/L of D-glucose was used as carbon source, 

with feeding at day 4 of 20 g/L, 40 g/L, 80 g/L and 160 g/L of D-glucose, using the M. antarcticus. The 

inoculated erlenmeyer’s were shaken at 200 rpm at 27°C up to 240 hours (Shaking incubator 2000, 

Optic ivymen system). Growth rates and glucose uptake rates were estimated using experiments carried 

out for this study and data from the literature. 
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4.1.3. Yeast cultivation parameters  

4.1.3.1. Cell dry weight 

To analyse biomass growth, the dry cell weight (DCW) was measured in the samples taken 

during the cultivation time. The culture broth was recovered, and 1 mL samples were centrifuged 

(Sartorius 1-15P, Sigma) at 10000 rpm for 5 min, resulting in the supernatant, which was removed and 

stored, and the pellet, which was washed twice with Milli-Q® water and left to dry at 60°C in the oven 

(Memmert) for, at least, 48 hours. The dry biomass was then weighed, and the DCW value was 

calculated. 

4.1.3.2. Optical density (OD)  

Optical density (OD) determination at 600 nm on a spectrophotometer (UH5300 Hitachi)allowed 

monitoring cell development in real-time. The OD measurement values of growth from the literature 

were converted into units of gDCW/L using the empirical relation from the yeast of 0.62 gDCW/L/OD 

(BNID 111182). [62] The DCW conversion coefficient value used for growth in M. antarcticus was 0.30 

g DCW/L/OD600. [63]  

A linear relationship of the exponential growth phase was reached with the ln(OD) over time. 

The growth rate of each condition was obtained with the slope value of each condition, as represented 

in Equation 1. The corresponding units are reported assuming time was measured in hours and biomass 

was measured as OD units. Doing a linear least squares regression between 𝑙𝑛𝑋 and (𝑡−𝑡0) will yield 

estimates for 𝜇 (the slope) and 𝑙𝑛𝑋0 (the intercept). [64] 

𝑙𝑛𝑋=𝑙𝑛𝑋0+𝜇(𝑡−𝑡0) 

Equation 1 – Exponential growth phase equation. 𝑋 = cell concentration (units of OD); 𝑋0= initial cell concentration 

at the beginning of the phase (units of OD); 𝑡= time; 𝑡0= time the phase starts (normally corresponds to the first time 

point within a growth phase); 𝜇= growth rate with units of 1/h or OD/h for exponential and linear growth, 

respectively.[64] 

4.1.4 Substrate quantification 

The previously collected supernatants were first diluted with H2SO4 0.05 M solution, in a 

proportion of 1:20, and centrifuged (Sartorius 1-15P, Sigma) at 10000 rpm for 5 min, to precipitate any 

cellular content that remained in the sample. Following that, they were transferred to a high-performance 

liquid chromatography (HPLC) vial. The sugar quantification was performed by HPLC, using a system 

(Merck Hitachi, Darmstadt, Germany) equipped with a refractive index detector (L-7490, Merck Hitachi, 

Darmstadt, Germany) and an Rezex ROA Organic Acid H+ (8%) column (300 mm× 7.8 mm, 

Phenomenex) at 65°C. Sulfuric acid (0.005 M) was used as mobile phase at 0.5 mL/min. 
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4.1.4.1. Substrate uptake rate 

The substrate uptake rate was estimated with a linear equation, with the corresponding units of 

time measured in hours, biomass measured as OD units, and substrate concentration measured as 

g/L.[64] The substrate consumption rates were converted into mmol/gDCW/h using the equation below: 

X g glu/L/OD/h ∗  
1

0.30 
g DCW
L/OD

 

0.18 g glu/mmol 
 

Equation 2 – Conversion of substrate uptake rate units of g glucose/L/OD/h to mmol/g DCW/h. 𝑋 = Substrate uptake 

rate. 1 OD = 0.30 gDCW/L; Molar weight of glucose = 180 g glu/mol. 

 

4.1.5. MEL and fatty acids quantification 

In this study, the methyl ester derivatives were prepared to allow the quantification of MEL and 

fatty acids on the second growth rate experiment, with feeding of different concentrations at day 4 

(chapter 4.1.2). At day 2, day 4, day 7 and day 10, samples of 3 mL of solution broth were recovered 

and lyophilised (Alpha 1-2 LD plus CHRIST®) for 24 hours. The obtained mass of each sample was 

weighted, giving the theoretical mass value, and transferred to a glass tube, where the sample was once 

more weighted, giving the experimental mass value that later was transesterified.  

The purified MEL fraction was mixed with 2 mL of HCl/methanol solution and 10 µL of standard 

solution, composed of n-hexane and heptanoic acid, and reacted at 80ºC (Memmert) for 60 minutes. 

Afterward, the transesterification reaction was stopped by adding 1 mL of water and 1 mL of hexane. 

This generated a two-layer solution, the lower an aqueous layer and the upper the ester layer. 

Subsequently, the organic phase was dried with anhydrous sodium sulphate, filtered, and collected in 

vials. 1 μL of the organic phase containing isolated MELs was injected into the Gas Chromatography 

(GC) system (Hewlett-Packard, HP5890) equipped with a FID detector and an Agilent HP Ultra2 

capillary column. The oven temperature gradients were set, starting from 140 ºC to 170 ºC at 15 ºC/min, 

170 to 210 ºC at 40 ºC/min and 210 to 310 ºC at 50 ºC/min and a final 310 ºC for 3 minutes. 

MEL's distinctive characteristics, including its two lipid chains with carbons ranging from 8 to 14, 

were taken into account when it was quantified (other lipid chains of fatty acids existing in the yeast are 

usually longer and soluble organic acids chains have usually less than eight carbons). MEL were 

measured using the quantities of C8, C10, C12 and C14 fatty acids with molecular weights ranging from 

144 to 242 g/mol depending on the length of the two-acyl chain (C8–C14). Fatty acids chains 

concentration values were quantified by C16 and C18 quantities on each sample. 
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4.1.5.1. MEL production and fluxes determination 

The flux of MEL, also denominated productivity of the reaction, was obtained from the values 

obtained by GC analysis. The values of MEL and fatty acid concentration, with units of g/L, were used 

to find the fluxes, using mmol/g DCW/h units. This was possible by considering the absorbance values 

(OD units) obtained at the same time (in hours) that the GC samples were collected, following the 

Equation 3 presented. Having MEL production values, as g/L, was necessary to reach the corresponding 

flux units, that later allowed a fit of the experimental values to the model.  

Y g MEL/L

𝑋
𝑡

∗

  
1

0.30 
g DCW
L/OD

 

  0.62 g MEL/mmol 
 

Equation 3  – Conversion of MEL concentration units of g MEL/L to mmol/g DCW/h. Y= MEL concentration (g/L); 𝑋 

= cell concentration (units of OD); 𝑡= time (hours). 1 OD = 0.30 gDCW/L; Molar weight of MEL = 616 g MEL/mol. 

 

4.1.6. MEL and fatty acids characterization 

Normal phase thin layer chromatography (TLC) plates (Macherey-Nagel Alugram Xtra SIL 

G/UV254) and a solvent system consisting of chloroform-methanol-water (6.5:1.5:0.2) were used for 

separating the MEL samples by polarity. The plates were sprayed with a matrix solution consisting of 

1.5 g of naphthol, 51 mL of ethanol, 4 mL of water and 6.5 mL of sulfuric acid. [14] [16]   

4.2. Simulation of yeast metabolism in MEL producing cells 

In silico simulation of yeast metabolism was performed using COBRA (Constraint-based 

Reconstruction Analysis) toolbox and MATLAB R2021a software. MATLAB has a scripting language 

considerably easier when compared to learning how to build operating system-dependent standalone 

programs.[52] The metabolic model used was iUma22, the first genome-scale metabolic model (GSMM) 

of Ustilago maydis, downloaded from https://github.com/iAMB-RWTH-Aachen/Ustilago_maydis-

GEM/tree/master/model. iUma22 was reconstructed from sequencing and annotation for the simulation 

of metabolic activities. [60] 

This model was retrieved from literature, where the authors utilized the automated 

PathwayTools workflow and build the biomass equation using literature values and codon composition, 

to have more than 25% of annotated genes in the sequenced genome present in the final model. In 

order to test growth predictions, exponential batch cultivations were used and substrate usage was 

corrected using arrays. Through experiments with glucose growth, the model's quality was evaluated, 

and the precision of rate predictions was examined. The pan-genome of various U. maydis strains that 

had been annotated and allowed for the reconstruction of KEGG pathways was used to compare the 

metabolic capability of the model iUma22. The model can thus be used to improve metabolic 

https://github.com/iAMB-RWTH-Aachen/Ustilago_maydis-GEM/tree/master/model
https://github.com/iAMB-RWTH-Aachen/Ustilago_maydis-GEM/tree/master/model
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engineering strategies and to determine the biotechnological potential of the overproduction of 

metabolites. [60,65] 

The GSMM model is characterized by 1855 reactions and 1233 species of metabolites. All the 

reactions are assigned with abbreviations, depending on the objective of the reaction, and all the 

metabolites are coded as abbreviations of the name, followed by the letter of the compartment where 

they belong, with [e] being Extracellular space, [c] the Cytoplasm and [m] the Mitochondrial Lumen. The 

metabolites also have the respective ID code, if registered, on KEGG (Kyoto Encyclopedia of Genes 

and Genomes) database, with each metabolite being represented as CXXXXX, with X being a number 

between 0 and 9. It is also available the corresponding ID to two other databases: PubChem ID and 

ChEBI ID. 

4.2.1. Pathways Reconstruction 

Taking this information into consideration, the available model for U. maydis, retrieved from 

GitHub database, has to be modelled according to previous chapter approaches (Chapter 2.4.), with 

MATLAB as the programming computing platform where fluxes constraints values should be added. 

However, the desired model for MEL synthesis has to consider the metabolism characteristics of M. 

antarcticus, the desired organism to do this biosurfactant production, and the highlighted differences 

between the two microorganisms (Chapter 2.3.). A general overview of the metabolic pathways 

necessary to have MEL production is presented in Figure 23, covering the pathways previously 

mentioned.  

 

Figure 23 - Simplified overall metabolism for MEL production, with glycolysis, tricarboxylic acid cycle, pentose 

phosphate pathway, gluconeogenesis, fatty acid synthesis, mitochondrial β-oxidation and peroxisomal β-oxidation. 

The solid lines represent reactions between metabolites. The dashed lines represent reactions between various 

metabolites that are not present in the image. 
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Of the 1855 coded reactions, the reactions that belong to pathways leading to the production of 

the two principal key building blocks, D-mannose, and erythritol, were manually selected. The metabolic 

pathways of these reactions are glycolysis with glucose as substrate, gluconeogenesis from glycerol 

derived from oil substrate, the pentose phosphate pathway, and the tricarboxylic acid cycle. Of the 1233 

metabolites, at least 140 metabolites were selected as belonging to the desired metabolism (Table A1). 

Mannosylerythritol (ME) and all the homologs of MEL are present in this model but are not coded in 

KEGG database. This means that the final product, the objective of the metabolic model of this work, is 

not yet coded in a database. 

To have a better insight into the model, a graphical figure with the most important pathways 

leading to the production of MEL has to be constructed. The first approach was to highlight all the 

reactions and manually construct an image of the metabolic pathways that produce MEL, in Excel. 

Afterward, converting the metabolic model iUma22 from SBML to a JSON file, it became possible to 

have a building construction with Escher. A script retrieved from GitHub also has the main pathways of 

this model, nevertheless, it was necessary to add to the reactions from gluconeogenesis, MEL synthesis, 

and from fatty acids in the build option of Escher software (Figure 24).  

 

Figure 24 - Escher visualization of metabolism for MEL production in Ustilago maydis, with reactions and 

metabolites dataset loaded from the model iUma22. Highlighted pathways: glycolysis, gluconeogenesis, pentose 

phosphate pathway, tricarboxylic acid cycle and MEL synthesis reactions. 

Pentose Phosphate Pathway 

Glycolysis 

TCA Cycle 

MEL 

Synthesis 

Gluconeogenesis 
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4.2.2. Flux Balance Analysis 

The prediction of an ideal steady-state flow vector that maximizes a microbial biomass production 

rate is a common use of the flux balance analysis (FBA).[66] The versatile function optimizeCbModel 

can be used to compute FBA and many of its variants. That is, optimizeCbModel's default method is the 

FBA approach, but depending on the optional parameters provided to optimizeCbModel, a variety of 

methods that are modifications on FBA, are also implemented and accessible with minor adjustments 

to the input parameters. There are two possibilities: either calculate an FBA solution value or a unique 

flux balance solution.  

Even if the meanings of the fields differ, depending on the optional input arguments to the function, 

the solution structure FBAsolution from optimizeCbModel always has the same form and a 

standardized solver status is stored in field.stat (Table 1). The solver-specific status origStat. 

is translated into the field.stat. This status is unique to each numerical optimization solver, and it is 

converted to the standardized solver status for other COBRA Toolbox functions to operate in a manner 

that is as invariant as feasible, with respect to the underlying solver. [1]  

 

Table 1 – Solver status in standardized form values and meaning for each one (adapted from [1]). 

FBAsolution.stat Meaning 

-1 Because of a time constraint or numerical difficulties, no solution is reported. 

0 
The constraints in the problem restrict any feasible steady-state flux vector from being 

generated, therefore no optimal solution can be found. 

1 Optimal solution has been discovered and is returned. 

2 
The lower and upper bounds are inadequate to constrain the objective function value, 

and the problem is unbounded, hence no optimal solution is provided. 

 

The flux balance analysis approach can be used to calculate growth rates of U. maydis on glucose, 

or it can also be used to simulate growth on other substrates (Figure 25). Nonetheless, the objective of 

this work is to upgrade the available GSMM for MEL production by Moesziomyces antarcticus.  

 

Figure 25 - Workflow to use the COBRA Toolbox. The internal implementation of the methods at higher levels is 

relied on by functions at lower levels of the hierarchy. For example, the gene deletion functions calculate optimal 

growth for each feasible metabolic network and the reactions associated with one or two genes deleted. The 

majority of the methods are based on FBA principles. [51] 
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The model presented contains some reactions that do not exist on M. antarcticus and need to be 

deleted. As so, the first procedure was to delete 15 reactions (Table A2.1) and consequently eliminate 

11 metabolites (Table A2.2), related to the production of Ustilagic Acid, which is graphically shown in 

Figure 26. This was possible using the command: 

 

>> model = removeRxns(model, rxnRemoveList); 

 

 

Figure 26 – Highlight of the deleted reactions from the iUma22 model, made with the Escher building application. 

The model contains three distinct compartments: the cytosol, the mitochondria, and the 

extracellular space. Another organelle existent in M. antarcticus, which may be important for the correct 

metabolism, and was already covered as being crucial to enable the production of Mannosylerythritol 

lipids by oils as substrate, is the peroxisome. In order to allow the synthesis of MELs by the 

stoichiometric model, it was necessary to add an exchange reaction for oils and to link the dead-end 

reaction present in the model, which produced fatty acids, to the lipids metabolism (Table A3.1). The 

command throughout is possible to add reactions in the COBRA toolbox is the following: 

   >>[model, rxnIDexists] = addReaction(model, ‘rxnID’, ‘reactionFormula’, 

‘Formula’, varargin) 

Simulation experiments were carried out with different values for glucose maximum uptake rate 

in units of mmol g DCW-1 h-1. Other additional constraints could be applied to the stoichiometric model 

and examples of commands to run in COBRA toolbox are presented in Table 2.  
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Table 2 - Example of COBRA Toolbox commands to perform flux balance analysis. [2]   

Other frameworks, like OptKnock or OptGene can be used to suggest possible gene knockout 

strategies that could improve MEL production in U. maydis or M. antarcticus. The production titre 

obtained upon the gene deletions suggested by these approaches can be further examined using the 

maximization of biomass per flux unit as the objective function. For example, anaerobic environments 

are modelled when the lower bound of the O2 exchange reaction is constrained to zero flux value, 

enabling no O2 to enter the system, which allows the identification of growth-coupled designs for 

numerous metabolites in the model under anaerobic conditions.  

To simulate various media, all metabolites present in the media should have exchange reactions 

with lower bounds constrained to their intended uptake rate, while all the metabolites that are not present 

in the cell should have exchange reactions with values for lower bounds confined to zero. [2] Since in 

this case, the goal was to maximize the conversion of known metabolites such as erythritol and GDP-

mannose in mannosylerythritol, the objective reaction of the model was changed with the following 

command, to retrieve an FBA solution value that represents the maximization of production of MEL D 

 

>> model = changeObjective(model,‘MAC2’); 

The corresponding FBA simulations of this work were automatically generated with MATLAB 

software, by constraining lower values of input of carbon sources. The corresponding script is described 

in the appendix section. 

 

 

 

 

 

 

 

 

Action Command 

Change bounds for anaerobic growth model = changeRxnBounds(model,‘EX_o2(e)’,0,‘l’); 

Change bounds for aerobic growth model = changeRxnBounds(model,‘EX_o2(e)’,-1000,‘l’); 

Change glucose uptake rate to 10 mmol gDCW-1 h-1 model = changeRxnBounds(model,‘EX_glc(e)’,-10,‘l’); 

Simulate maximum growth by FBA solution = optimizeCbModel(model); 

Simulate maximum growth of regulated model 
[FBAsols,DRgenes,constrainedRxns,cycleStart,states] 

= optimizeRegModel(model); 

Change objective maximum ATP yield model = changeObjective(model,‘ATPM’); 
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5. Results 

    5.1. In silico metabolism of Ustilago maydis model 

5.1.1. Targeting and visualization 

A metabolic flux model that describes the main metabolic pathway used for MEL production was 

designed, focusing on the production of mannosylerythritol (ME) and lipids. This model describes 

specific cell features concerning central carbon metabolism and cell bioenergetics, highlighting the 

pathways for the production and assembling of the MEL building blocks. To achieve a better 

understanding of the pathways necessary to produce MEL, a graphic pathway image was constructed 

(Figure 27) in Excel. The main routes, including glycolysis, the pentose phosphate pathway, the 

tricarboxylic acid cycle, gluconeogenesis, fatty acid synthesis, and β-oxidations (partial and complete) 

are highlighted.  

 

Figure 27 - Graphic model of overall metabolism for MEL production, with glycolysis, tricarboxylic acid cycle, 

pentose phosphate pathway, gluconeogenesis, fatty acid synthesis, mitochondrial β-oxidation, and peroxisomal β-

oxidation. The solid lines represent reactions between metabolites (adapted from [14,16,25,30] ). The KEGG IDs 

for each reaction are in green and the KEGG ID code for each metabolite is presented in white (also presented in 

Table A1).  

Nevertheless, the dynamic visualization of the pathways was desired, with the purpose of a 

better and cleaner design, but also to make it possible to see where the fluxes values retrieved by 

MATLAB are present on the cell. This can be achieved with the Escher program and the script available 

by the authors of the paper. With the building option of this software, it was possible to add the desired 

reactions corresponding to pathways covered in Chapter 2.3, leading to the final map visualization 

represented in Figure 28. 
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Figure 28 - Visualization of fluxes of the principal pathways that lead to MEL production in U. maydis, with 

maximization of biomass reaction, in the iUma22 model with Escher-FBA application. 

 

5.1.2. Ustilago maydis model parametrization 

The model retrieved from GitHub, and also available in the Biomodels database [67] and 

constructed based on Ustilago Maydis metabolism, was analysed in MATLAB. As non-mathematical 

model organisms, Escherichia coli is the best prokaryotic model and Saccharomyces cerevisiae is the 

best eukaryotic model. In such models, according to the genotype, the objective is to model the 

phenotype. In mathematical models’ systems, the phenotype, as the objective, is the cellular growth and 

the genotype that will be modelled is the metabolic network. Hence, the FBA approach was used to 

calculate the growth rates of U. maydis on glucose media, and flux values constraints were applied to 

understand how the reactions in the model change their flux values accordingly.  

For reversible and irreversible reactions, the bounds set on reaction rates in a metabolic model 

typically vary from -1000 to 1000 and 0 to 1000, respectively. [47] The values of fluxes come in 

mmol/gDCW/h units, and to constrain a specific substrate flux, a value between the bounds values 

previously mentioned should be applied. Imposing different flux values for a substrate, even if just a 

small change in the input, should have a complex response in the metabolism. As so, at least one of the 

reactions in the model must have a constrained lower or upper bound, for the estimated fluxes to be 
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meaningful. [51]  Given some network constraints, the flux variability analysis (FVA) approach, another 

possible analysis approach, estimates the minimum and maximum value of a reaction flux. [68] 

In this case, values for glucose uptake were considered. The attributed values for fluxes will 

generate a solution, according to the premise that the objective function has to be optimised. An 

objective function is a network reaction, or a linear combination of network reactions, for which a linear 

programming problem is optimized. Usually, it is a given biological objective, commonly the 

maximization of biomass production. [68]  The solution value should be a value of flux flowing through 

it, that corresponds to the organism's exponential growth rate. It is possible to compute a solution to the 

flux balance analysis problem using the following command in COBRA toolbox: 

>> FBAsolution=optimizeCbModel(model);[1] 

 The value obtained from the previous command, coming as an f, is provided by applying the 

FBA approach. If f = 0 and FBAsolution.stat = 0, the model does not grow, with turns it into an 

inconsistent model. However, the solution obtained, applying different flux values for glucose, in most 

cases generated a value of f ≠ 0 and FBAsolution.stat = 1. According to what was previously 

described in Chapter 4.2.2 - Table 1, this FBAsolution.stat means that an optimal solution has 

been discovered and is returned.  

Different initial concentrations of glucose were considered, and the respective substrate uptake 

rates were applied as glucose input constraints, to have the corresponding predicted growth values 

given by MATLAB (Table 3). With these values, it was possible to compare the experimental and the in 

silico outputs, which gave the difference between them as percentage values. The values obtained were 

registered between 5% and 9%, with the maximum glucose concentrations having values of 122% of 

error and the lower value registering 47%. The lower value of this experiment should not be considered, 

since the value obtained as substrate uptake rate is not realistic, since it is a very high value, and the 

biomass values obtained registered some outliers. [60]  

Table 3 – Substrate uptake rate values and growth rate values, with glucose as substrate, retrieved from the 

literature [60], and compared with the FBA solution given by MATLAB, with U. maydis. 

 

Experiment ID 
Initial 

Concentration 
(g/L) 

Substrate-
uptake 

(mmol/gDCW/h) 

Experimental 
Growth Rate 

(h-1) 

Predicted 
Growth 

Rate (h-1) 
Difference 

Error 
(%) 

2196_glc 19 6.24 0.27 0.51 0.24 47 

2229v1 50 2.20 0.18 0.17 0.01 7 

Wierckx_50glc 54 1.22 0.08 0.09 0.01 6 

Wierckx_100glc 106 0.67 0.04 0.04 0.00 5 

LV3_130v1 126 1.10 0.07 0.08 0.01 7 

LV3_130v2 132 0.74 0.04 0.04 0.00 9 

LV3_200v1 203 0.33 0.02 0.01 0.01 122 

LV3_200v2 216 0.36 0.02 0.01 0.01 122 
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As shown in Figure 29, or in the appendix section in Figure A1, growth with different carbon 

sources was simulated through Escher-FBA application when biomass growth is maximized. This allows 

an understanding of how the values from the fluxes changes, and which pathway is taken, when an 

arbitrary input value of 10 mmol/gDCW/h is given to each source (glucose, xylose or glycerol).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

   

 

 

 

 

 

 

 

 

Figure 29 - Examples of Escher-FBA simulations. (A) Simulated growth with glucose as a carbon source. Flux 

value of entry of glucose = 10 mmol/gDCW/h. (B) Simulated growth with xylose as a carbon source.  Flux value of 

entry of xylose = 100 mmol/gDCW/h .(C) Simulated growth with glycerol as carbon source.  Flux value of entry of 

glycerol = 100 mmol/gDCW/h. (D) Simulated growth with glucose and glycerol as carbon sources. Flux value of 

entry of glucose = 10 mmol/gDCW/h. Flux value of entry of glycerol = 10 mmol/gDCW/h. All fluxes are in units of 

mmol/gDCW/h and are shown by colors according to the value: 0 (grey); 0.1 – 2 (light purple); 2 – 14 (green); 14-

20 (light red); Bigger than 20 (red). 

(A) (B) 

(C) (D) 
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5.1.2.1. Deleted reactions from Ustilago maydis model  

The upgrade of the Ustilago maydis model, iUma22, to a Moesziomyces antarcticus model must 

include the deletions of reactions and metabolites that are present in U. maydis, but not in M. antarcticus. 

Although the two organisms share the same lineage, secondary metabolites like Ustilagic acid [69], is 

exclusively produced by U. maydis. Therefore, as already explained in Chapter 4.2.2., the reactions 

leading to the production of Ustilagic Acid were deleted, and the consequent FBA solution values were 

obtained, as shown in Table 4, having biomass equation and MEL production as objectives. 

Table 4 - In silico flux values calculated in COBRA toolbox in MATLAB. Predicted values with iUma22 model and 

model with deleted reactions of ustilagic acid production, with biomass reaction and MAC2 reaction optimized. The 

constraint applied was the input of the glucose flux of 2.20 mmol/gDCW/h (corresponding to 50 g/L of initial glucose). 

Conditions Reactions iUma22 model 
iUma22 model 
with deletions 

For Biomass 
maximization 

 
Glucose input (50g/L) = 

2.20 mmol/gDCW/h 

FBA Solution 0.169 0.169 

BIOMASS_REACTION 0.169 0.169 

EX_o2_e -0.011 -0.011 

EX_nh4_e -1.113 -0.796 

EX_pi_e 7.087 7.087 

EX_so4_e -0.014 -0.014 

EX_h2o_e -3.830 -3.988 

EX_glc__D_e -2.200 -2.200 

EX_gly_e 0.317 0.000 

EX_mal__L_e 1.332 1.491 

MAC2 reaction 
maximization 

 
Glucose input (50g/L) = 

2.20 mmol/gDCW/h 
 

FBA solution 0.317 0.317 

EX_co2_e 2.366 2.366 

EX_nh4_e -0.106 -0.106 

EX_h2o_e 3.383 3.383 

EX_glc__D_e -2.200 -2.200 

EX_mal__L_e 0.277 0.277 

EX_gly_e 0.106 0.106 

MAC2 0.317 0.317 

EX_MEL_D_e 0.317 0.317 

E4PK; ER; EMT1  MAC1; 
MAC2; MEL_Dte 

0.317 0.317 

 

The values obtained showed some flux values slightly different from the values previously 

obtained without the deletion of the 15 reactions that lead to the production of a product that is only 

present in U.maydis, only in the condition where biomass reaction was the objective reaction. All the 

predictions were performed with the same constraint, the flux value of glucose input equal to 2.20 

mmol/gDCW/h, which corresponds to an initial experimental concentration of 50 g/L of D-glucose. 
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Even if the same FBA solution is obtained, the value of flux of NH4, H2O, malate, and the 

absence of entry of glycerol are the four fluxes that registered changes from the values obtained on 

iUma22 model, when biomass is the reaction optimized.  The need for less NH4 entering the cell was 

noticed, registered with a difference of 0.32 mmol/gDCW/h, oppositely to the demand of more H2O, with 

more 0.16 mmol/gDCW/h then the value on the original model. Malate, contrarily, exited the cell with a 

higher flux value, with a difference of 0.16 mmol/gDCW/h, and glycerol had a flux value equal to 0.00 

mmol/gDCW/h, whereas the value registered in the original model was 0.32 mmol/gDCW/h. Thus, it 

seems that the flux of NH4 is directly related to the flux of glycerol, and the flux of H2O is related to the 

flux of malate since it presented the same flux values of difference.  

With the maximization of MAC2 reaction (Table 4), the reaction that leads to the production of 

MEL-D, one of the four homologs of MEL, no relevant differences were detected between the original 

model and the model with deletions. Nevertheless, it is possible to compare the differences between the 

flux values of the exchange reactions that are active when the objective function is the biomass reaction. 

With the same flux value of glucose entering the cell, with the maximization of MEL production, the 

biomass reaction does not present any flux. The entry of oxygen (O2) with a value of 0.01 mmol/gDCW/h 

when biomass was the objective reaction, is 0.00 mmol/gDCW/h with MEL production as the objective, 

that also presented the production of CO2, with a flux value of 2.37 mmol/gDCW/h. The glycerol flux 

value is also lower, which means that the flux of production is decreased.  

Regarding MEL biosynthesis reactions that are active when MAC2 reaction is optimized, it is 

possible to have the following reactions registering the same flux: E4PK - Erythrose-4-phosphate kinase; 

ER - Erythrose reductase; EMT1 - Glycosyltransferase (assembly of GDP-mannose and erythritol) 

MAC1 - Mannosylerithritol C2 Acyltransferase; MAC2 - Mannosylerithritol C3 Acyltransferase; MEL_Dte 

– MEL D Transporter and EX_MEL_D_e (Exchange of MEL D). The same outcome was observed when 

these reactions suffered a “knock-out” on the Escher-FBA application, which presented the same values 

of fluxes as the previous chapter.  

5.1.2.2. Added reactions to Ustilago maydis model 

 Along with the fact that the GSMM presented for U. maydis have specific reactions of that 

organism, that needed to be deleted, it also lacks some reactions present in M. antarcticus. As 

previously mentioned, since peroxisome is not present in this model, the main pathways that are lacking 

are related to lipids' metabolic reactions. It is possible to access that “Fatty-Acids_c[c]” metabolite, as 

the “Glycerol” metabolite, are present in this model at the cytoplasm. However, they are not derived from 

the same metabolite, since fatty acids come from a mono-glyceride “CPD-504_c[c]”, that do not come 

from any other reaction.  

This means that this mono-glyceride is derived from a dead-end reaction, where the metabolite 

does not present any reaction that leads to its production. Having dead-end metabolites in the model, 

meaning that some reactions connecting specific metabolites are not present, will lead to the 

accumulation of certain metabolites in the cytosol and that some others appear in the cell without 
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explanation, contrary to the steady-state balance assumption that FBA approach relies on. At the same 

time, “Fatty acids” is a metabolite that do not have any connection to acetyl-CoA metabolite.  

 To fix the dead-end reaction, an extracellular oil metabolite and a cytoplasmatic oil metabolite 

needed to be added to the model, as well as the corresponding reactions of extracellular entry, transport, 

and conversion into the monoglyceride and the glycerol. To connect “Fatty acids” to “Acetyl-CoA”, a 

simple reaction was also added, since these two metabolites already existed on the model, but are not 

linked (Figure 30).  

 

  

Figure 30 – Addition of reactions and metabolites to fix dead-end reactions. Added reactions and added metabolites 

(green), reactions (blue) and metabolites (orange) already present in the iUma22 model. The original reactions are 

visualized by Escher software with building option.  

The addition of this metabolite and these four reactions lead to minimal changes in the flux 

values, compared with values obtained to the iUma22 model without this modification (Table A3.2), 

having the input value for glucose of 2.20 mmol/gDCW/h. Compared with values obtained for biomass 

optimization, residual flux values were registered to the production of Ca2, while values of production of 

malate diminished by 0.029 mmol/gDCW/h, which represents 2% of the value obtained in the original 

model. This error value was also registered on the production of fumarate, which was just active in the 

model with the added reactions.  

Following this, the lower boundary flux values of all the reactions added were constrained to 

arbitrary values, to perceive if these constraints could originate different values of lipids production. The 

majority of these changes lead to an infeasible solution, indicating the death of the cell.  

Oil_c 

Oil_e 

EX_Oil_e 

Oil_Tr 

FA_TAG_Production 

FA_1 

accoa_c 
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    5.2. The effect of the carbon source on growth and MEL 

production of Moesziomyces yeasts 

5.2.1. Glucose, Galactose, and Lactose assessed as a carbon source for 

Moesziomyces yeasts 

The three conditions with different sugars (glucose, lactose, and galactose) in shake flasks, 

described in Chapter 4.1.2., were analysed by HPLC (Chapter 4.1.4) for each strain. The peak intensity 

of each sugar, possible to attribute according to the retention time, was registered to calculate the sugar 

concentration in each sample (Figure A2). With the use of the different sugars, sugar consumption and 

biomass growth values were evaluated and the values retrieved are presented in Table 5. The highest 

sugar consumption rate was reached when lactose was the carbon source, with 0.65 g/L.h and 0.57 

g/L.h , in M. antarcticus and M. bullatus, respectively.  

Table 5 – Sugar consumption (g/L.h), maximum biomass concentration (g/L), and biomass growth rate (h-1) values 

for glucose, galactose, and lactose as carbon sources in fermentations with M. antarcticus and M. bullatus strains. 

Sugar Strain Sugar consumption (g/L.h) 
Maximum biomass 

production (g/L) 
Biomass growth rate (h-1) 

Glucose 
M. antarcticus 0.31 ± 0.06 9.5 (Day 6) 0.107  ± 0.003 

M. bullatus 0.35 ± 0.03 7.8 (Day 6) 0.091 ± 0.046 

Galactose 
M. antarcticus 0.41 ± 0.06 6.5 (Day 3) 0.074 ± 0.001 

M. bullatus 0.40 ± 0.02 7.9 (Day 6) 0.079  ± 0.002 

Lactose 
M. antarcticus 0.65 ± 0.06 10.5 (Day 2) 0.136  ± 0.001 

M. bullatus 0.57 ± 0.05 12.3 (Day 3) 0.041 ± 0.001 

 

 Regarding biomass production, M. antarcticus has a higher value when D-glucose and D-

lactose are used as carbon sources, exhibiting a value of biomass growth rate of 0.136 h-1, three times 

higher than the value of M. bullatus of 0.041 h-1, when D-lactose was used, Nonetheless, approximated 

biomass growth rates were obtained in M. antarcticus and M. aphidis cultivations, using D-galactose 

(0.074 h-1 and 0.079 h-1, respectively). 

As expected, [16] the highest concentrations of biomass were obtained with M. antarcticus at 

the end of the fermentation, when using D-glucose and D-lactose, with a value of 9.5 g/L and 9.3 g/L, 

respectively (Figure A3). Using D-galactose, the maximum biomass of 7.9 g/L was observed at day 6 in 

M. bullatus, a higher value if compared with the value of 6.5 g/L of biomass produced by M. antarcticus 

at day 3.  

 From Table 5, the maximum value of the concentration of biomass in all conditions is obtained 

with M. bullatus cultivation using D-lactose, on day 3, with a value of 12.3 g/L of biomass. The average 

value of maximum biomass per strain that were calculated was 8.83 g/L with M. antarcticus and 9.33 

g/L with M. bullatus.  
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5.2.2. The effect of glucose on growth and MEL production of Moesziomyces 

antarcticus 

Two experiments were realized, with M. antarcticus strain, and exclusively having glucose as a 

carbon source. The objective of these experiments was to retrieve the yeast growth rate values, to 

compare with values from the literature obtained with U. maydis, and to understand if the model is 

predicting values close to the ones getting experimentally. The substrate uptake rate was also calculated 

in both experiments, to have a flux from glucose possible to apply in the model as a constraint, achieved 

with the HPLC technique of sugar quantification.  

The difference between the two experiments was only related to the conditions, since in the first 

experiment five different initial concentrations of glucose were applied, and in the second experiment 

five different concentrations of glucose were added after day 4, when the yeast growth is theoretically 

stabilized and the secondary metabolites, such as MELs, are produced. Such experimental values can 

be compared with the flux value of MEL production given by the model.  

5.2.2.1. Batch cultures at different glucose concentrations  

With the experiment described in the previous chapter, M. antarcticus  growth rate values were 

assessed with glucose as a carbon source, as described in Chapter 4.1.2. The biomass values 

registered until day 7 (168 hours) are represented in Figure 31. 

 

Figure 31 – M. antarcticus growth registered as biomass values (g DCW/L) of different concentrations of glucose 

through time (hours). 5 g/L (grey); 20 g/L (light blue); 40 g/L (dark blue); 80 g/L (light pink); 120 g/L (dark pink). 
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In all the glucose concentrations, between 0 hours and 12 hours, the absorbance values 

registered showed an explicit augment (Figure A4). At 72 hours after the beginning of the experiment, 

the yeasts with 5 g/L and 20 g/L of glucose exhibited the highest value of absorbance within each record 

for the specific concentration. Subsequentially, the OD values measured for the flask with 5 g/L and 20 

g/L of glucose started to decline, as well as the biomass value which also lowered after that point.  

The other three concentrations, 40 g/L, 80 g/L, and 120 g/L of glucose, all presented constant 

growth until day 4 (96 hours). The lower concentration of this group, 40 g/L, presented values of 7.0 

gDCW/L at 96 hours and 8.2 gDCW/L at 120 hours, which was the highest biomass value measured 

from all the glucose concentrations experimented, with a lower value of 7.3 gDCW/L at 168 hours. The 

concentration of 80 g/L of glucose exhibited a similar profile to the concentration below, reaching the 

highest value of 7.4 gDCW/L at 120 hours, showing a decline in the value, presenting just 5.1 gDCW/L 

at 168 hours. However, on day 7 (168 hours), the higher concentration of 120 g/L of glucose was still 

growing, with the last value registered of 7.4 gDCW/L, higher than the biomass value registered on day 

5 with the same concentration.  

 

Figure 32 - M. antarcticus growth values of absorbance (OD) through time (hours) with different glucose 

concentrations. 5 g/L (grey); 20 g/L (light blue); 40 g/L (dark blue); 80 g/L (light pink); 120 g/L (dark pink). 

The HPLC values for sugar quantification were also retrieved and the substrate uptake rate was 

also calculated, as previously described (Chapter 4.1.4.1), and are represented in Table 6. With these 

values, and the OD values before stated, the growth rate value for each condition was obtained, and 

both were compared with literature values reached with similar conditions, but using U. maydis as the 

organism, instead of M. antarcticus.  
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Figure 33 - Glucose consumption of M. antarcticus with different initial glucose concentrations through time (hours). 

5 g/L (grey); 20 g/L (light blue); 40 g/L (dark blue); 80 g/L (light pink); 120 g/L (dark pink). 

 As it is possible to realize from Figure 33, the glucose consumption presented a similar profile 

in the three lower concentrations, reaching 0 g/L on day 1 (24 hours) with the lowest concentration of 5 

g/L of glucose, on day 3 (72 hours) with 20 g/L of glucose, and only at day 5 (120 hours) with 40 g/L of 

glucose. The two higher concentrations showed a decreasing concentration of sugar, as expected, with 

a linear decrease only from 72 hours to 80 g/L of glucose and from 96 hours to 120 g/L of glucose. None 

of the two concentrations reached 0 g/L of sugar on the medium, however with 80 g/L of initial glucose, 

the concentration value surpassed half of the initial concentration, reaching 23.48 g/L on day 7, and with 

120 g/L of glucose reaching the value of 65.11 g/L in the medium.  

Table 6 – Growth rate (h-1) values and substrate uptake values (mmol/gDCW/h) obtained with experiments 

described in the literature with U. maydis [60,70] and obtained in this work with M. antarcticus having glucose as 

the carbon source. The values are presented in order of increasing initial glucose concentration. 
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Experiment  
(glucose g/L) 

Hours 
Initial 

Concentration 
(g/L) 

Growth Rate 
(h-1) 

Substrate-uptake 
(mmol/gDCW/h) 

M. antarcticus 5 g/L 0-168 4 0.16 2.05 

M. antarcticus 20 g/L 0-168 15 0.20 2.30 

U. maydis 20 g/L [60] 0-64 19 0.27 6.24 

M. antarcticus 40 g/L 0-168 32 0.03 0.43 

U. maydis 50 g/L [60]  0-50 50 0.18 2.20 

U. maydis 50 g/L [70] 0-120 54 0.08 1.22 

M. antarcticus 80 g/L 0-168 77 0.18 2.69 

U. maydis 100 g/L  [70] 0-120 106 0.04 0.67 

M. antarcticus 120 g/L 0-168 121 0.06 0.37 

U. maydis 130 g/L [60]  0-264 126 0.07 1.10 

U. maydis 130 g/L [60]  0-264 132 0.04 0.74 

U. maydis 200 g/L [60]  0-264 203 0.02 0.33 

U. maydis 200 g/L [60]  0-264 216 0.02 0.36 
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On Table 6 are represented the values of the growth rate and substrate uptake rate obtained, 

with an initial concentration of glucose ranging from 5 g/L to 200 g/L. As it is possible to conclude, the 

highest values of both growth and substrate rate are obtained with the lowest concentrations of glucose 

in the experiment here described with 4 g/L of glucose. This was expected since the values obtained in 

the literature using 19 g/L of glucose were 6.24 mmol/gDCW/h for substrate uptake rate and 0.27 h-1 of 

growth rate. In fact, in the literature, the value obtained with U. maydis using 19 g/L of glucose was not 

further considered as a value to be given in the model. This assumes that the iUma22 model was not 

constructed to predict conditions of low glucose concentrations, which is in accordance with the 

unrealistic high substrate-uptake values obtained with M. antarcticus in this work. Therefore, the three 

concentrations of 4 g/L, 15 g/L, and 19 g/L will not be considered for the following description of results.   

 The highest growth rate value, of 0.18 h-1, was reached with the concentration of 77 g/L of 

glucose in the experiment before described with M. antarcticus, and with 50 g/L of glucose with U. 

maydis. The lowest growth rate value of 0.02 h-1 was obtained when 200 g/L of glucose is given to U. 

maydis. With M. antarcticus the lower value of growth rate to be considered must be 0.06 h-1, achieved 

when 120 g/L of glucose is present on the medium. These two concentration values are the highest 

presented, for each strain, in the range of all the concentrations presented. The growth rate value of 

0.03 h-1, obtained when 40 g/L of glucose is used to feed M. antarcticus strain, is not realistic, as the 

excepted value should be in the range of 0.16 h-1 – 0.25 h-1, as previously described in the 

literature.[11,70] 

 Regarding the substrate uptake values, the highest values reached with each strain, are 

obtained at the same conditions that the higher values of growth rate, with 77 g/L of glucose with M. 

antarcticus reaching 2.69 mmol/gDCW/h and with 50 g/L of glucose with U. maydis having a substrate-

uptake value of 2.20 mmol/gDCW/h. The two lower values of uptake of glucose were accomplished with 

the higher substrate value given to M. antarcticus and with the higher substrate value given to U. maydis. 

As so, just 0.37 mmol/gDCW/h was registered given 120 g/L of glucose to M. antarcticus, and only 0.33 

mmol/gDCW/h was calculated with U. maydis strain with 200 g/L of initial glucose.  

5.2.2.2. Fed-Batch cultures at different glucose concentrations 

 Afterward, a fed-batch experiment was performed, with 40 g/L of initial glucose in 5 different 

conditions, and with more glucose added on day 4, performing a final concentration of 40 g/L (40 g/L+0 

g/L), 60 g/L (40 g/L+20 g/L), 80 g/L (40 g/L+40 g/L), 120 g/L (40 g/L+80 g/L), and 200 g/L (40 g/L+160 

g/L). The biomass values shown in Figure 34, represent the growth after the addition of glucose on day 

4, and the correspondent OD values (Figure A5) were taken into account to calculate the growth rate 

values for each condition.  

From day 4 (96 hours) until day 10 (240 hours), the maximum biomass value achieved for all 

the concentrations of glucose, except for the higher concentration of 40 g/L+160g/L, was obtained on 

day 7. At this point, 176 hours after the begging of the fermentation, a value of 11.1,13.1, 13.1 and 12.9 

was achieved with concentration values of 40 g/L, 60 g/L, 80 g/L and 120 g/L of total glucose, 
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respectively. After day 7, the values of biomass of these four conditions started to decline, with a clear 

decrease of the lowest concentration, which did not suffer any addition of glucose on day 4. The values 

of 60 g/L and 80 g/L presented an almost equal representation, which was according to the excepted 

since the two concentrations' values are almost equal.  

 

Figure 34 - Values of biomass (g/L) through time (hours) with different glucose concentrations added from day 4 

(96 hours). 40 g/L (grey); 40 g/L + 20 g/L (light blue); 40 g/L + 40 g/L (dark blue); 40 g/L + 80 g/L (light pink); 40 g/L 

+ 160 g/L (dark pink). 

At the highest concentration used, 200 g/L of total glucose, a maximum of 12.3 g/L of biomass 

was determined at day 10. As shown in Table 7, and comparing with the experiment later reported, 

without the addition of more glucose at day 4, the experiment with these additions benefited from more 

biomass production, with values from 11 to 13 g/L of biomass, while, when comparing with the same 

range of concentrations of the last experiment, values of just 7 to 8 g/L of biomass were obtained. 

Table 7 – Comparison between batch experiment with glucose as carbon source with 5 g/L, 20 g/L, 40 g/L, 80 g/L, 

120 g/L of initial concentration and with the fed-batch experiment with 40 g/L of initial glucose and 20 g/L, 40 g/L, 

80 g/L and 160 g/L of glucose added at day 4. Both experiments were realized with the M. antarcticus strain. 

Carbon 
Source 

Concentration (g L-1) 
Sugar consumption 

(g/L.h) 
Maximum biomass 

production (g DCW/L) 

Glucose 

5 0.16  1.5 (Day 3) 

20 0.34 4.3 (Day 3) 

40 0.39 8.2 (Day 5) 

80 0.34 7.4 (Day 5) 

120 0.31 7.4 (Day 7) 

Glucose 
added on 

day 4 

40 0.30  11.1 (Day 7) 

40 + 20 (60) 0.21 13.1 (Day 7) 

40 + 40 (80) 0.09 13.1 (Day 7) 

40 + 80 (120) 0.34 12.9 (Day 7) 

40 + 160 (200) 0.33 12.3 (Day 10) 
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Sugar consumption values showed similar values to the ones obtained without feeding glucose 

on day 4, with values between 0.20 g/L.h and 0.34 g/L.h, while the values previously registered were 

between 0.16 g/L.h and 0.39 g/L.h. To note that, when 40 g/L of glucose was added on day 4 to 40 g/L 

of glucose, with a total of 80 g/L of glucose, a value of 0.09 g/L.h was obtained. 

In this experiment, the MEL and lipids quantification was also accessed, possible by GC analysis 

(Chapter 4.1.5). The maximum values of MEL and lipids concentration were obtained at day 7 with 40 

g/L + 40 g/L of glucose, with 8.4 g/L of MEL production and 10.2 g/L of lipids production (Figure A6).   

Similar profiles of MEL production were achieved in three conditions, 40 g/L, 40 g/L + 20 g/L 

and 40 g/L + 80g/L, with the highest value of MEL production on day 7 with 40 g/L of glucose of 3.98 

g/L of MEL, with 40 g/L +80 g/L of 3.24 g/L of MEL, and on day 10 with 40 g/L + 80 g/L of glucose of 

4.42 g/L of MEL. With the other two concentrations of glucose, the addition at day 4 of 40 g/L and of 

160 g/L to the initial 40 g/L, the profile of MEL production presented a growing production, with the 

highest values of lipids being reached in both conditions at day 7. The other three conditions of different 

glucose concentrations showed an equal pattern, with constant values of lipids production between day 

2 to day 10.  

These values are not expected since it is common to have a growing increase of lipids and MEL 

concentrations through time. For this reason, to have accurate modelling, and derived from not having 

duplicate values from this experiment, values obtained in the same conditions were taken from literature 

to perform the in silico predictions. 

 5.3. Fitting of experimental results with model 

With the values obtained experimentally with the M. antarcticus strain described in chapter 5.2. 

a fitting of the values to the iUma22 model was necessary. With this fitting, the parameters that differ 

between the Ustilago Maydis strain and Moesziomyces antarcticus strain should be adjusted, turning 

the model presented in one closer to the Moesziomyces species. 

5.3.1. Moesziomyces antarcticus fitting model for growth 

The first comparison, already made on the values obtained to biomass growth, with glucose 

only added at day 0, was previously described in Chapter 5.1.2. – Table 3. In this chapter, the values of 

substrate uptake rate (mmol/gDCW/h) and growth rate (h-1) are highlighted in Table 8. Below, in figure 

35, the experimental values obtained with M. antarcticus strain and the values with U. maydis retrieved 

from literature are compared. The two strains exhibited a good value of R2, even if a lower value was 

obtained with M. antarcticus strain, as shown in the linear equations. 
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 Figure 35 - Comparision of values of experimental rates. Growth rate (h-1) and substrate uptake rate 

(mmol/gDCW/L) values were obtained experimentally with U. maydis (orange) and M. antarcticus (blue). U. maydis 

values were retrieved from the literature [60] and the linear regression line equation is y=0.09x-0.017 with an 

R2=0.98, while M. antarcticus values presented an equation equal to y=0.07x+0.024 with an R2=0.94.  

 After the experimental comparison with data obtained for U. maydis strain, it was necessary to 

obtain the predicted growth values from MATLAB with the iUma22 model to the glucose flux values 

obtained experimentally with the M. antarcticus strain. As it is shown in Table 8, the difference between 

experimental values to predicted values was in the range between 0.00 and 0.05, while this difference 

was only between 0.00 and 0.01 with values obtained in U. maydis (Table 3).   

Table 8 - Applying experimental values obtained in batch cultures with different initial glucose concentrations and 

comparing the solution predicted by MATLAB. 

 

Another approach was to use different data sets from the ones used until now, employing a 

different carbon source, but still with M. antarcticus strain, and see if the model can predict growth rate 

values as well as it predicted when glucose was used as a carbon source. Xylose experimental results 
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Rate (h-1) 

Difference 
Error 
(%) 

M. antarcticus  
5 g/L 

4 2.05 0.16 0.16 0.00 3 

M. antarcticus 
20 g/L 

15 2.30 0.20 0.18 0.02 11 

M. antarcticus 
40 g/L 

32 0.43 0.03 0.02 0.01 83 

M. antarcticus 
80 g/L 

77 2.69 0.18 0.21 0.03 12 

M. antarcticus 
120 g/L 

121 0.37 0.06 0.01 0.05 390 
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were taken from the literature [3,71], and knowing that the same strain was utilised in those experiments, 

FBA approach was again employed to predict the values of biomass growth.  

 The error obtained in an experiment with 40 g/L xylose added on day 0 was 170 %. As it is 

possible to retrieve, compared to the error values obtained with glucose with the same strain (Table 8), 

this value is double. Even if the error was 390% when 120 g/L of glucose was used, the other error 

values were between 3% and 83%, which can be compared with the values obtained for U. maydis 

(Table 3), which were between 5% and 47%. In both ranges of values, the higher concentration values, 

120 g/L in M. antarcticus and 200 g/L in U. maydis, were not taken into account because the error value 

obtained was not realistic when compared to the other concentrations.  

5.3.2. Moesziomyces antarcticus fitting model with MEL optimization 

With the growth values obtained with the model to M. antarcticus, it was then necessary to 

understand if the value of fluxes for the metabolite of interest was predicted accordingly. The objective 

function of the model was changed from biomass reaction to MAC2 reaction, which converts hexoyl-2-

mannosylerythritol into mannosylerythritol lipids type D, with the final goal of producing at least one MEL 

homolog. 

Already knowing values from MEL production with different glucose uptake values, it was 

possible to convert those values from concentration units to flux units. With this conversion, and having 

MEL D production as the objective function of the iUma22 model, the first approach was to understand 

if the same values were obtained in silico, without having any change in the Ustilago maydis model. This 

was done by maximizing the MAC2 reaction in Escher-FBA and applying the flux values of glucose 

experimentally obtained to the reaction of glucose uptake, D-Glucose exchange reaction. 

 In Table 9 is possible to compare the flux values obtained experimentally and compare those 

with the predicted values given by the in silico approach employed. The difference between the values 

ranges between 0.05 and 0.10 mmol/gDCW/h, which is bigger than the values obtained from the 

comparison of growth values. Since most of the values were retrieved from work previously reported in 

the literature, it was also possible to calculate the error generated between the values predicted with 

xylose. 

The values of error in percentage surpass 50% with values from fed-batch glucose experiments, 

between 56% and 82%. The highest value from the table, 82%, was obtained with the only experimental 

value done on this work that, as already mentioned, should not be accounted as an accurate value. With 

xylose fed-batch experimental values, the error presented was higher than 1000%. Escher-FBA was 

also applied to see what were the changes in the value of fluxes through the pathways, comparing an 

input constraint of 10 mmol/gDCW/h of glucose or xylose (Figure 36). 
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Table 9 - Substrate uptake rate values (mmol/gDCW/h) with glucose and xylose as carbon source, with values 

obtained experimentally through fed-batch on this work (Glu. Ant. 40g/L + 40 g/L) and retrieved from the literature, 

[3] comparing the experimental values with the value predicted retrieved through MATLAB. Glu.40:Glu.80 – 40 g/L 

of glucose at day 0 and addition of 80 g/L of glucose at day 4; Glu.80:Glu.40 - 80 g/L of glucose at day 0 and 

addition of 40 g/L of glucose at day 4; Glu.80:Glu.80 - 80 g/L of glucose at day 0 and addition of 80 g/L of glucose 

at day 4. Xyl.40:Xyl.40 and Xyl.40:Xyl.80 - 40 g/L of xylose at day 0 and the addition of 40 g/L and 80 g/L of xylose 

at day 4, respectively. 

 

From the visualization of these pathways, it can be concluded that most of the flux goes through 

the same pathways, leading to MEL D production, with activated fluxes in glycolysis, the pentose 

phosphate pathway, and MEL synthesis. As such, the principal difference observed is when glucose is 

given as input to the cell, rather than xylose, where higher fluxes of glycolysis are seen through the color 

difference, and with the activation of TCA, which is not active when xylose input flux is active. 

Then, the modifications described in chapter 5.1.2 were applied, deleting the Ustilagic acid 

production reactions, and adding the reactions of oil exchange and the conversion of the metabolite 

“Fatty acids” to “Acetyl-CoA”. The values obtained with this approach were only possible to obtain with 

MATLAB, applying the experimental values to the modified model previously described, and seeing how 

much the flux values from MEL biosynthesis pathways change (Table A4). Again, the flux values that 

were registered do not show relevant modifications from the ones obtained with the original iUma22 

model.  

Experiment 
Substrate-

uptake 
(mmol/gDCW/h) 

Experimental 
MEL production 

flux 
(mmol/gDCW/h) 

Predicted MEL 
production flux 
(mmol/gDCW/h) 

Difference 
Error 

(%) 

Glu. Ant. 
40g/L + 40 g/L 

0.770 0.048 0.094 0.05 82 

Glu.40:Glu.80 1.049 0.045 0.138 0.09 67 

Glu.80:Glu.40 1.015 0.052 0.132 0.08 61 

Glu.80:Glu.80 0.800 0.044 0.099 0.05 56 

Xyl.40:Xyl.40 0.307 0.108 0.007 0.10 1440 

Xyl.40:Xyl.80 0.300 0.083 0.006 0.08 1275 
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Figure 36 - Escher-FBA fluxes visualizations with MEL production optimized, by maximizing MAC2 reaction. 

(A) Glucose entry, mimicking the experiment with initial glucose (day 0) of 40 g/L and addition of 80 g/L of 

glucose at day 4. Glucose uptake rate = 1.049 mmol/gDCW/h. (B) Xylose entry, mimicking the experiment 

with initial xylose (day 0) of 40 g/L and addition of 80 g/L of xylose at day 4. Xylose uptake rate = 0.300 

mmol/gDCW/h. All fluxes are in units of mmol/gDCW/h and are shown by colours according to the value: 0 

(grey); 0.01–0.50 (purple); 0.50–1.00 (red); 1.00–3.00 (green). 
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 (B) (B) 
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6. Discussion  

The model iUma22 was constructed with Ustilago maydis as the reference organism. All the 

principal metabolic routes that allow the production of the metabolite of interest in this study, 

mannosylerythritol lipids, are present, and each metabolite is identified as the corresponding KEGG ID 

code. However, it is necessary to notice the absence of peroxisomes in this model, and the associated 

pathways that take place on the organelle, especially partial β-oxidation. Nevertheless, the organism of 

interest is not U. maydis, but rather Moesziomyces species which, cv until now, has not been described 

in the KEGG database.  

The first approach was to perceive which of the 1855 reactions are relevant to the production of 

the metabolite of interest and how it is possible to visualize these reactions. By highlighting these 

pathways and applying the constraint of the input flux value of glucose on the cell, it was possible to 

obtain the predicted values of growth in this model. These values were compared with the growth rate 

values obtained for U. maydis by the authors of the model, which only showed a difference between 5% 

and 9% of the experimental values, obtained with glucose concentrations between 50 g/L and 130 g/L 

(Table 3 – Chapter 5.1.2). The values obtained for lower concentrations (20 g/L) or higher values of 

glucose (200 g/L) showed a difference of more than 47%. This could mean that the model has a good 

prediction for the majority of the inputs but has to be well curated with lower and higher values of glucose 

concentrations. 

To obtain a better prediction of flux values when employing experimental values obtained for 

Moesziomyces organisms, some reactions were deleted from the model. The flux balance analysis 

approach was used to determine how much the predicted values, to the same glucose input value, 

changed from the original model, without modifications. The same FBA solution was obtained, and most 

of the flux values were maintained for the majority of reactions (Table 4 – Chapter 5.1.2.1). However, 

there was less need for NH4, which was directly linked to the retention of glycerol in the cell, at the same 

time that H2O was required, with the same flux difference of the higher production of malate. Thus, these 

two metabolite reactions were correlated. 

This analysis was performed under biomass optimization conditions. With the maximization of 

the MAC2 reaction, no flux value appeared to be affected by the deletion of reactions leading to the 

production of Ustilagic acid. Even so, comparing the flux values with the values obtained with the 

maximization of biomass, the flux of O2 entry is 0, and the flux value for the production of CO2 is different 

from 0. The glycerol flux value was also lower with the activation of pathways of MEL biosynthesis, 

which means that glycerol could be implicated in the production of MEL.  

The lipid reactions were added to the original iUma22 model. In this case, only residual flux 

values were registered, with Ca2, malate, and fumarate exchange reactions being the only exchange 

reactions that changed from the original value, indicating that this addition affected the values obtained 

in silico.  
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With the model explored and the necessary changes made to upgrade it, experiments were 

conducted with the objective of choosing the strain with the highest growth rate from the Moesziomyces 

species as the organism of interest to compare predicted values with experimental ones. With the 

knowledge gained through the first shake flask experiment, with three different sugars as a carbon 

substrate for the growth of Moesziomyces yeasts, M. antarcticus was the strain with a higher biomass 

growth rate in MEL production, reaching higher values of biomass produced and with more sugar 

consumption when compared with the M. bullatus strain (Table 5 – Chapter 5.2.1). In addition to the 

HPLC technique, which allowed quantification of the amount of substrate present in the yeast culture 

medium, qualitative techniques could also be performed.  

Based on these results, Moesziomyces antarcticus was used in subsequent experiments. To 

understand how the predictions of the model differ when employing values obtained with this strain and 

not with U. maydis, fermentation with glucose as a carbon source was performed. This sugar was 

chosen because, in an article describing the iUma22 model [60], the growth characteristics were 

evaluated with different initial concentrations of glucose, and the results were compared with the 

predicted values of the model. To compare the experimental values obtained in this work with the values 

reported by the authors of the paper, it was necessary to have the most similar experimental protocol, 

with the only difference being the organism used. 

Knowing that the two organisms have a genome with a high synteny value [12], the comparison 

between the growth rate values and the substrate uptake values showed that the growth of both 

organisms on glucose is substrate inhibited, as higher values of initial glucose concentration present 

lower values of both growth and substrate uptake rate. This has already been mentioned by the authors 

of the literature. [60] Also it is necessary to note that values obtained in both organisms demonstrated 

how different substrate uptake rate and growth rate values can result from similar initial substrate 

concentrations. 

Based on these comparison results, it was expected that the predicted growth rates obtained 

with MATLAB to experimental growth values with M. antarcticus presented a slightly higher difference 

than with U. maydis, since the model needs to be adapted to the Moesziomyces strain. However, as 

shown in Figure 35 (Chapter 5.3.1), the difference between the linear regression lines was not large, 

therefore, the difference between the experimental and predicted growth values was also not very large.  

A graph with the experimental values of growth rate and substrate uptake rate, in contrast to the 

values of these rates predicted in silico, showed that the model needs more curation to obtain a perfect 

fit from the experimental values. Nevertheless, as observed in Figure 37, this difference is very low and 

could only be due to the fact that the model used to make the predictions was not curated to be used 

with the organism in this work.  
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Figure 37 - Growth rate and substrate uptake rate experimental values obtained with M.antarcticus strain in batch 

experiments with different glucose (blue crosses)  in contrast to the linearity obtained to growth rate values with the 

same substrate uptake rate value, predicted in silico with the iUma 22 model (black dots). 

 Afterwards, the values from the fed-batch experiment with glucose, with equal initial 

concentration and different concentrations added on day 4, were also assessed to obtain the substrate 

uptake and biomass values. The biomass concentration values obtained were higher than those 

recorded in the previous experiment. The values of MEL and lipids concentration were also analysed, 

to compare the flux production value of MEL using in silico approaches. The experimental results were 

unexpected, since MEL and lipid concentrations did not increase over time in most of the conditions. 

Nevertheless, it was possible to compare these results with previously obtained results [3] under the 

same conditions and with the same organism. Substrate uptake values were converted to flux units and 

used to obtain the corresponding in silico MEL production flux values. 

Comparing the error values between the values obtained experimentally and the values 

predicted from the model, when MEL production was optimised, the values of error obtained were higher 

than the errors with biomass optimization. This means that the predictions are more accurate when the 

growth of the cell is the objective, and not when MEL production is maximized. This could be due to the 

fact that the model was recently released and was optimized to have a fitting for growth, and not to 

specific metabolites. 

The modified metabolic flux model, designed in MATLAB, which has the deleted equations from 

Ustilagic Acid production and added reactions to avoid dead-end metabolites which generate 

accumulation in the cell, was also implemented to predict flux values and compare them with the 

experimental values obtained for biomass growth and MEL production. In both conditions, the 

predictions were only perceived in the compounds already mentioned: O2, CO2 and Glycerol, when the 

biomass reaction was the objective, and Ca2, malate, and fumarate, when MEL production was 

optimized, with MAC2 reaction as the objective function. 

 

y = 0,0852x - 0,0185

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

G
ro

w
th

 R
at

e 
(h

-1
)

Substrate Uptake (mmol/gDCW/h)

Experimental In silico Linear (In silico)



62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

7. Conclusion and Future Prospects 

The first possible conclusion from this work is that the present model was not constructed to 

predict very low or very high values of glucose concentrations, that were converted into substrate uptake 

flux values for the cell model. This is perceived because it is just possible to achieve some linearity in 

the data between 40 g/L and 130 g/L of glucose. With less than 40 g/L of glucose or more than 150 g/L 

of glucose, the flux input value given to the model is lower than 0.20 mmol/gDCW/h, which is the value 

where the model predicts that a value of that dimensions will kill the cell. 

 Even if the growth values and the substrate uptake values obtained with M. antarcticus were 

not that different from the ones obtained in the literature with U. maydis [60], not having duplicates of 

any experiment implies a less rigorous dataset, which could also influence the difference between the 

values obtained to the two organisms. This is also applied to the experiment where the MEL production 

values were assessed since that experiment did not present the usual patterns of production of MEL 

and lipids frequently obtained.[71]  

The predicted values of flux for MEL production, however, presented a larger discrepancy than 

the values obtained experimentally when compared to the values for biomass growth in the batch 

experiment. This could be due to not just the fact that it is necessary to repeat the experiment and have 

higher insights of the iUma22 model, but also possibly because of the lack of all MEL homologs and 

major metabolites on the production of this biosurfactant coded on available databases. This means that 

even if the model predicts a value of flux in the pathways leading to its production, it is not as accurate 

as when the metabolites are well reported and described in databases. 

Nevertheless, the original model should undergo a deeper analysis, with all the equations from 

the model revised to understand if there are any metabolic gaps or other reactions/metabolites that are 

not present in Moesziomyces organisms, that were not identified in this work. To allow a more accurate 

model, other carbon sources, such as other sugar substrates or lipidic substrates (for example fried oil) 

should be assessed, and the values of the growth rate and MEL production could be used to have a 

better fit of the upgrade model to M. antarcticus. To have a higher level of confidence in that values, 

other analytical approaches could be used.  

For structural qualification, Nuclear Magnetic Resonance (NMR) experiments make it possible 

to understand the structural composition of the sample under analysis. This technique can enable the 

establishment of the flux distribution by 13C-NMR experiments, which give the carbon flow from 

hydrophilic (hexoses, like glucose or pentoses) and hydrophobic (free fatty acids, different types of oils) 

labeled 13C substrates, that lead to the production of the MEL building blocks. Furthermore, because 

the reconstructed networks are carbon mapped, they may be used in 13C flux research, which will be 

valuable to understand which ratio of carbon follows which route and if the model is predicting 

accordingly with that flow. Another approach, easier to perform and that can give, for example, 

information related to the type of MELs present in each sample is TLC. In this case, TLC will allow quick 

detection of the composition of the samples and whether they contain MEL or not. 
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By combining genomics, RNA-seq, and NMR data from producing and non-producing situations, 

it may be possible to better understand not only the MEL-cluster behavior but also the key genes 

involved in its regulation, showing inflection points in terms of gene expression and yield. [23] As so, 

having studies on M. antarcticus genome, as well as performing transcriptomic and metabolomics 

studies, should also be executed. Data collected from all of that approaches should also be considered 

to achieve a more accurate metabolic model of Moesziomyces.  

The fitting of the experimental data to the metabolic network model should also have followed 

another approach that allowed calibration. The three different models obtained for Moesziomyces 

species, the one with deleted reactions, the one with added reactions, and a third with both 

modifications, needed to use the Mean Relative Error (MRE) scores measurement. With this and the 

auto-scaled transformation of estimated datasets, the model version with the best fit to the experimental 

data could be identified in silico. The MRE measurement, described in the literature, states that the 

model calibration requires comparing experimental data with the model's estimated values to 

continuously improve the model's structure until there are minimal discrepancies between the datasets. 

Comparing experimental growth rates observed with various organic carbon sources with the values of 

projected growth rates is a general step in this calibration. Because the values in the dataset can differ 

on orders of magnitude and dimensions, log10 or auto-scale transformation can also be used. [72] 

In conclusion, with the in silico model working properly and having the structural analysis 

obtained by 13C-NMR experiments, current bottlenecks in MEL production using Moesziomyces strains 

could be identified, and the final objective is to reach logical strategies for the production of this 

biosurfactant. These strategies have the goal to increase substrate carbon use efficiency, aiming to 

bring biosurfactant economic costs to be competitive with fossil oil-driven surfactants. The recognition 

of the difficulties in MEL production, with acknowledgment of the pathways that do not contribute to that 

production and where the flux values are higher, should conduce to a solution for the economy of the 

production of this biosurfactant.  

Bioinformatics is thus the answer to many of the laboratory's arduous and time-consuming 

experiments. Machine learning and data science are growing methods in the bioprocesses industry, and 

utilising well-curated cell models could help to predict accurate experimental values without the 

necessity of dispendious work. Models can mimic the conditions experienced by the cell, having an 

equal profile as the experimental one, likewise leading to data that need less processing, making it 

easier to analyse and to find solutions more readily. 
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9. Appendix 
 

Table A1 – KEGG ID and names of metabolites, according to each metabolic pathway, from iUma22 model. 

Pathway Abbreviation 
KEGG ID 
[compartment] 

Description 

Glycolysis 

pyr_c[c] C00022[Cytoplasm] Pyruvate 

glc__D_c[c] C00031[Cytoplasm] D-Glucose 

f6p_c[c] C00085[Cytoplasm] D-Fructose 6-phosphate  

g6p_c[c] C00668[Cytoplasm] D-Glucose 6-phosphate 

3pg_c[c] C00197[Cytoplasm] 3-Phospho-D-glycerate 

fdp_c[c] C00354[Cytoplasm] Fructose 1,6-bisphosphate  

Pentose 
Phosphate 
Pathway 

r5p_c[c] C00117[Cytoplasm] D-Ribose 5-phosphate 

ru5p__D_c[c] C00199[Cytoplasm] D-Ribulose 5-phosphate  

xu5p__D_c[c] C00231[Cytoplasm] D-Xylulose 5-phosphate  

6pgc_c[c] C00345[Cytoplasm] D-gluconate 6-phosphate 

6pgl_c[c] C01236[Cytoplasm] 6-phospho D-glucono-1,5-lactone 

s7p_c[c] C05382[Cytoplasm] Sedoheptulose 7-phosphate 

Gluconeogenesis 

glyc3p_c[c] C00093[Cytoplasm] sn-Glycerol 3-phosphate  

gdpmann_c[c] C00096[Cytoplasm] GDP-alpha-D-mannose 

dhap_c[c] C00111[Cytoplasm] Dihydroxyacetone phosphate 

glyc_c[c] C00116[Cytoplasm] Glycerol  

g3p_c[c] C00118[Cytoplasm] D-Glyceraldehyde 3-phosphate  

MANNOSE-6P_c[c] C00275[Cytoplasm] alpha-D-mannose 6-phosphate 

man1p_c[c] C00636[Cytoplasm] Alpha-D-mannose 1-phosphate 

Tricarboxylic 
acid cycle 

pyr_m[m] 
C00022[Mitochondrial 

Lumen] 
Pyruvate 

akg_m[m] 
C00026[Mitochondrial 

Lumen] 
2-Oxoglutarate 

oaa_m[m] 
C00036[Mitochondrial 

Lumen] 
Oxaloacetate 

succ_m[m] 
C00042[Mitochondrial 

Lumen] 
Succinate 

glx_m[m] 
C00048[Mitochondrial 

Lumen] 
Glyoxylate  

succoa_m[m] 
C00091[Mitochondrial 

Lumen] 
Succinyl-CoA 

fum_m[m] 
C00122[Mitochondrial 

Lumen] 
Fumarate 

mal__L_m[m] 
C00149[Mitochondrial 

Lumen] 
(S)-malate 

cit_m[m] 
C00158[Mitochondrial 

Lumen] 
Citrate  

OXALO-
SUCCINATE_c[c] 

C05379[Cytoplasm] Oxalosuccinate 

Other 
Metabolites 

h2o_c[c] C00001[Cytoplasm] H2O  

atp_e[e]; atp_c[c] 
C00002[Extracellular 

space]; [Cytoplasm] 
ATP  

nadph_c[c] C00005[Cytoplasm] NADPH  

nadp_c[c] C00006[Cytoplasm] NADP+ 

o2_m[m] ; o2_e[e]; 
o2_c[c] 

C00007[Mitochondrial 

Lumen];[Extracellular 
space]; [Cytoplasm] 

Oxygen 

adp_c[c] C00008[Cytoplasm] ADP  

pi_c[c] C00009[Cytoplasm] Phosphate 
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coa_c[c] 
coa_m[m] 

C00010[Mitochondrial 

Lumen]; [Cytoplasm] 
Coenzyme A 

ppi_c[c] C00013[Cytoplasm] Diphosphate 

h_c[c] C00080[Cytoplasm] H+ 

datp_c[c] C00131[Cytoplasm] dATP 

dgtp_c[c] C00286[Cytoplasm] dGTP 
 

 

 

 

(A) 
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(C) 
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Figure A1 – Examples of Escher-FBA simulations. (A) Simulated growth with glucose as a carbon source. Flux 

value of entry of glucose = 10 mmol/gDCW/h. (B) Simulated growth with xylose as a carbon source.  Flux value of 

entry of xylose = 100 mmol/gDCW/h. (C) Simulated growth with glycerol as carbon source.  Flux value of entry of 

glycerol = 100 mmol/gDCW/h. (D) Simulated growth with glucose and glycerol as carbon sources. Flux value of 

entry of glucose = 10 mmol/gDCW/h. Flux value of entry of glycerol = 10 mmol/gDCW/h. All fluxes are in units of 

mmol/gDCW/h and are shown by colors according to the value: 0 (grey); 0.1 – 2 (light purple); 2 – 14 (green); 14-

20 (light red); Bigger than 20 (red). 

 

Table A2.1 - Deleted reactions from iUma22 model, leading to the production of homologs of ustilagic acid. 

Number 
of the 

reaction 
Abbreviation Description Reaction 

1692 HDCAMO 
Hexadecanoate 
Monooxigenase - 
CYP1 

h_c[c] + hdca_c[c] + nadph_c[c] + o2_c[c]  -> nadp_c[c] 
+ h2o_c[c] + 16hhdca_c[c] 

1693 HHDCAMO 

16-Hydroxy 
Hexadecanoate 
Monooxigenase - 
CYP2 

h_c[c] + nadph_c[c] + o2_c[c] + 16hhdca_c[c]  -> 
nadp_c[c] + h2o_c[c] + 1516dhhdca_c[c] 

1694 UAGT 
Ustilagic Acid glycosyl 
transferase - UGT1 

2 udpg_c[c] + 1516dhhdca_c[c]  -> 2 h_c[c] + 2 udp_c[c] 
+ cb1516dhdca_c[c] 

1695 UAHA 

Ustilagic Acid hexyl 
acylase and 
acetylase - 
UAT1,FAS2,UHD1 

h_c[c] + hexACP_c[c] + accoa_c[c] + nadph_c[c] + 
o2_c[c] + cb1516dhdca_c[c]  -> ACP_c[c] + coa_c[c] + 
nadp_c[c] + h2o_c[c] + UA_A_c[c] 

1696 UAAAO UA A alpha oxidase 
h_c[c] + nadph_c[c] + o2_c[c] + UA_A_c[c]  -> 
nadp_c[c] + h2o_c[c] + UA_B_c[c] 

(D) 



75 
 

 

Table A2.2 - Deleted metabolites from iUma22 model, leading to the production of homologs of ustilagic acid. 

 
 

 
 
 
Table A3.1 - Added metabolites and reactions to iUma22 model. The corresponding command to each addition is 
described after the tables. 
 

 

 

1697 UAOA 

Ustilagic Acid octyl 
acylase and 
acetylase - 
UAT1,FAS2,UHD1 

h_c[c] + ocACP_c[c] + accoa_c[c] + nadph_c[c] + 
o2_c[c] + cb1516dhdca_c[c]  -> ACP_c[c] + coa_c[c] + 
nadp_c[c] + h2o_c[c] + UA_C_c[c] 

1698 UACAO UA C alpha oxidase 
h_c[c] + nadph_c[c] + o2_c[c] + UA_C_c[c]  -> 
nadp_c[c] + h2o_c[c] + UA_D_c[c] 

1699 UA_Ate UA A Transporter UA_A_c[c]  <=> UA_A_e[e] 

1700 UA_Bte UA B Transporter UA_B_c[c]  <=> UA_B_e[e] 

1701 UA_Cte UA C Transporter UA_C_c[c]  <=> UA_C_e[e] 

1702 UA_Dte UA D Transporter UA_D_c[c]  <=> UA_D_e[e] 

1703 EX_UA_A_e 
Exchange Hexoyl 
Ustilagic Acid - UA A 

UA_A_e[e]  -> 

1704 EX_UA_B_e 
Exchange Hexoyl 
alpha-Hydroxy  
Ustilagic Acid - UA B 

UA_B_e[e]  -> 

1705 EX_UA_C_e 
Exchange Octyl 
Ustilagic Acid - UA C 

UA_C_e[e]  -> 

1706 EX_UA_D_e 
Exchange Octyl 
alpha-Hydroxy 
Ustilagic Acid - UA D 

UA_D_e[e]  -> 

Abbreviation KEGG ID [compartment] Description 

UA_A_c[c] No KEGG ID [Cytoplasm] Hexoyl Ustilagic Acid - UA A 

UA_B_c[c] No KEGG ID [Cytoplasm] Hexoyl alpha-Hydroxy  Ustilagic Acid - UA B 

UA_C_c[c] No KEGG ID [Cytoplasm] Octyl Ustilagic Acid - UA C 

UA_D_c[c] No KEGG ID [Cytoplasm] Octyl alpha-Hydroxy Ustilagic Acid - UA D 

UA_A_e[e] No KEGG ID [Extracellular space] Hexoyl Ustilagic Acid - UA A 

UA_B_e[e] No KEGG ID [Extracellular space] Hexoyl alpha-Hydroxy  Ustilagic Acid - UA B 

UA_C_e[e] No KEGG ID [Extracellular space] Octyl Ustilagic Acid - UA C 

UA_D_e[e] No KEGG ID [Extracellular space] Octyl alpha-Hydroxy Ustilagic Acid - UA D 

16hhdca_c[c] No KEGG ID [Cytoplasm] 16-Hydroxy Hexadecanoate 

1516dhhdca_c[c] No KEGG ID [Cytoplasm] 15,16-dihydroxy Hexadecanoate 

cb1516dhdca_c[c] No KEGG ID [Cytoplasm] Cellobiosyl 15,16-dihydroxy Hexadecanoate 

Number 
of the 

reaction 
Abbreviation Description Reaction 

1857 EX_Oil_e 
Exchange Oil 
(triacilglyceride) 

Oil_e[e]  -> 

1858 Oil_Tr Oil Transporter Oil_e[e] <=> Oil_c[c] 
1859 FA_TAG_Production Oil ? Oil_c[c] <=> CPD-409_c[c] 
1860 FA_1 Fatty acids? Fatty-Acids_c[c] -> accoa_c[c] 

Abbreviation KEGG ID [compartment] Description 

Oil_e[e] No KEGG ID [Extracellular space] Oil 

Oil_c[c] No KEGG ID [Cytoplasm] Oil 
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Comands of the added metabolites and added reactions: 
 

model = addMetabolite(model,'Oil_e[e]','Oil_e') 

model = addMetabolite(model,'Oil_c[c]','Oil_c') 

 

[model, rxnIDexists] = 

addReaction(model,'EX_Oil_e','reactionFormula','Oil_e[e]  -> '); 

 

[model, rxnIDexists] = 

addReaction(model,'Oil_Tr','reactionFormula','Oil_e[e] <=> 

Oil_c[c]'); 

[model, rxnIDexists] = 

addReaction(model,'FA_TAG_Production','reactionFormula','Oil_c[c] 

<=> CPD-409_c[c] '); 

[model, rxnIDexists] = 

addReaction(model,'FA_1','reactionFormula','Fatty-Acids_c[c] -> 

accoa_c[c] '); 

  

Adds a reaction to the model or modify an existing reaction 

  

  USAGE: 

  

     [model, rxnIDexists] = addReaction(model, rxnID, varargin) 

  

  INPUTS: 

     model: COBRA model structure 

     rxnID: Reaction name abbreviation (i.e. 'ACALD') 

 

Authors: 

        - Markus Herrgard 1/12/07 

        - Richard Que 11/13/2008 Modified the check to see if duplicate reaction 

already is in model by using S matrix coefficients to be able to handle larger 

matricies 

        - Ines Thiele 08/03/2015, made rxnGeneMat optional 

        - Thomas Pfau May 2017  Change To parameter Value pairs 

 

 

Table A3.2 – Flux values obtained with the iUma22 model and the model with the added metabolites and 
reactions.Differences obtained when utilising the modified model, with comparison with the original (iUma22) model 
are highlighted in the last column. 

Conditions Reactions 
iUma22 
model 

iUma22 model 
with additions 

 
Difference from 
the “original” 

model 

For Biomass 
maximization 

 
Glucose input (50g/L) 
= 2.20 mmol/gDCW/h 

FBA Solution 0.169 0.169 --- 

BIOMASS_REACTION 0.169 0.169 --- 

EX_o2_e -0.011 -0.011 --- 

EX_nh4_e -1.113 -1.113 --- 

EX_pi_e 7.087 7.087 --- 

EX_so4_e -0.014 -0.014 --- 

EX_h2o_e -3.830 -3.800 0.78 % 

EX_ca2_e 0.000 1.598e-13 Active 

EX_glc__D_e -2.200 -2.200 --- 

EX_gly_e 0.317 0.317 --- 

EX_mal__L_e 1.332 1.303 2.18% 

EX_fum_e 0.000 0.030 Active 
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MAC2 reaction 
maximization 

 
Glucose input (50g/L) 
= 2.20 mmol/gDCW/h 

 

FBA solution 0.317 0.317 --- 

EX_co2_e 2.366 2.366 --- 

EX_nh4_e -0.106 -0.106 --- 

EX_pi_e 0.000 -6.897e-14 Active 

EX_h2o_e 3.383 3.383 --- 

EX_ca2_e 0.000 1.598e-13 Active 

EX_glc__D_e -2.200 -2.200 --- 

EX_mal__L_e 0.277 0.277 --- 

EX_gly_e 0.106 0.106 --- 

EX_cys__L_e 0.000 2.700e-16 Active 

EX_met__L_e 0.000 -2.700e-16 Active 

MAC2 0.317 0.317 --- 

EX_MEL_D_e 0.317 0.317 --- 

E4PK; ER; EMT1  MAC1; 
MAC2; MEL_Dte 

0.317 0.317 
--- 

 

 

 

 

 

 

      

 

Figure A2 – HPLC peaks of glucose from inoculum used in the fermentation. (A) Glucose at day 1 with M. 

antarcticus strain. A peak with a value at 13.403 minutes is registered. (B) Glucose at day 6 with M. bullatus strain. 

A peak with a value at 13.470 minutes is registered. 

 

 

 

 

(a) 

(B) (A) 
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Figure A3 - Biomass (g/L) production and sugars (g/L) consumption values at day 0 (0 hours), day 1 (24 hours), 

day 2 (48 hours), day 3 (72 hours) and day 6 (144 hours) of fermentation with M. antarcticus (filled line) and M. 

bullatus (dashed line) strains. The sugar used as carbon source is glucose (A), galactose (B) and lactose (C). 

(A) 

(B) 

(C) 
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Figure A4 - M. antarcticus growth values of absorbance (OD) through time (hours) with different glucose 

concentrations. 5 g/L (grey); 20 g/L (light blue); 40 g/L (dark blue); 80 g/L (light pink); 120 g/L (dark pink). 

 

 

Figure A5 - M. antarcticus growth values of absorbance (OD) through time (hours) with different glucose 

concentrations. 40 g/L (grey); 40 g/L + 20 g/L (light blue); 40 g/L + 40 g/L (dark blue); 40 g/L + 80 g/L (light pink); 

40 g/L + 160 g/L (dark pink). 
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Figure A6 – Values of MEL and lipids production (g/L) through time (days) with different concentrations of glucose. 

40 g/L (grey); 40 g/L + 20g/L (light blue); 40 g/L + 40 g/L (dark blue); 40 g/L + 80 g/L (light pink); 40 g/L + 160 g/L 

(dark pink). (A) Values of MEL production, conserving GC values for C8, C10, C12 and C14. (B) Values of Lipids 

production, considering GC values for C16 and C18. 
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Table A4 – Values from iUma22 model updated to M. antarcticus, with deletion and addition of specific 

reactions, optimized to MEL production.  

Conditions Reactions 
iUma22 
model 

iUma22 model 
with deletions 
and addition 

 
Difference 
from the 

“original” 
model 

MAC2 reaction 
maximization 

 
Glucose input (50g/L) 
= 2.20 mmol/gDCW/h 

 

FBA solution 0.317 0.317 --- 

EX_co2_e 2.366 2.366 --- 

EX_nh4_e -0.106 -0.106 --- 

EX_pi_e 0.000 1.202e-12 Active 

EX_h2o_e 3.383 3.383 --- 

EX_ca2_e 0.000 1.598e-13 Active 

EX_glc__D_e -2.200 -2.200 --- 

EX_mal__L_e 0.277 0.277 --- 

EX_gly_e 0.106 0.106 --- 

EX_cys__L_e 0.000 9.081e-14 Active 

EX_met__L_e 0.000 -9.081e-14 Active 

MAC2 0.317 0.3171 --- 

EX_MEL_D_e 0.317 0.3171 --- 

E4PK; ER; EMT1  MAC1; 
MAC2; MEL_Dte 

0.317 0.317 --- 

 


